On the Linearization of Hamiltonian Systems on Poisson Manifolds
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 323-330

Voir la notice de l'article provenant de la source Math-Net.Ru

The linearization of a Hamiltonian system on a Poisson manifold at a given (singular) symplectic leaf gives a dynamical system on the normal bundle of the leaf, which is called the first variation system. We show that the first variation system admits a compatible Hamiltonian structure if there exists a transversal to the leaf which is invariant with respect to the flow of the original system. In the case where the transverse Lie algebra of the symplectic leaf is semisimple, this condition is also necessary.
@article{MZM_2005_78_3_a0,
     author = {Yu. M. Vorob'ev},
     title = {On the {Linearization} of {Hamiltonian} {Systems} on {Poisson} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--330},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a0/}
}
TY  - JOUR
AU  - Yu. M. Vorob'ev
TI  - On the Linearization of Hamiltonian Systems on Poisson Manifolds
JO  - Matematičeskie zametki
PY  - 2005
SP  - 323
EP  - 330
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a0/
LA  - ru
ID  - MZM_2005_78_3_a0
ER  - 
%0 Journal Article
%A Yu. M. Vorob'ev
%T On the Linearization of Hamiltonian Systems on Poisson Manifolds
%J Matematičeskie zametki
%D 2005
%P 323-330
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a0/
%G ru
%F MZM_2005_78_3_a0
Yu. M. Vorob'ev. On the Linearization of Hamiltonian Systems on Poisson Manifolds. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 323-330. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a0/