Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_78_3_a0, author = {Yu. M. Vorob'ev}, title = {On the {Linearization} of {Hamiltonian} {Systems} on {Poisson} {Manifolds}}, journal = {Matemati\v{c}eskie zametki}, pages = {323--330}, publisher = {mathdoc}, volume = {78}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a0/} }
Yu. M. Vorob'ev. On the Linearization of Hamiltonian Systems on Poisson Manifolds. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 323-330. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a0/
[1] Marsden J., Ratiu T., Rangel G., “Symplectic connections and the linearization of hamiltonian systems”, Proc. Roy. Soc. Edinburgh. Sect. A, 117 (1991), 329–380 | MR | Zbl
[2] Marsden J. E., Ratiu T. S., Introduction to Mechanics and Symmetry, Springer-Verlag, New York, 1994 | MR
[3] Karasev M. V., Vorobjev Yu. M., “Adapted connections, Hamiltonian dynamics, geometric phases, and quantization over isotropic submanifolds”, Amer. Math. Soc. Transl., 187:2 (1998), 203–326 | MR
[4] Flores Espinoza R., Vorobiev Yu. M., “Hamiltonian formalism for fiberwise linear systems”, Bol. Soc. Mat. Mexicana, 6:3 (2000), 213–234 | MR | Zbl
[5] Vorobiev Yu., “Hamiltonian equations of the first variation equations”, Mathematics, 191:4 (2000), 447–502
[6] Vorobjev Yu., “Coupling tensors and Poisson geometry near a single symplectic leaf”, Lie Algebroids, Banach Center Publ., 54, Warszawa, 2001, 249–274 | Zbl
[7] Vorobev Yu. M., “O linearizovannykh puassonovykh strukturakh”, Matem. zametki, 70:4 (2001), 486–493 | MR | Zbl
[8] Weinstein A., “The local structure of Poisson manifolds”, J. Diff. Geom., 18 (1983), 523–557 | MR | Zbl
[9] Cannas da Silva A., Weinstein A., Geometric Models for Noncommutative Algebras, Berkeley Math. Lecture Notes, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[10] Karasev M. V., Vorobjev Yu. M., “Deformations and cohomology of Poisson manifolds”, Lecture Notes in Math., 1453, Springer-Verlag, Berlin, 1990, 271–289