On the Linearization of Hamiltonian Systems on Poisson Manifolds
Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 323-330.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linearization of a Hamiltonian system on a Poisson manifold at a given (singular) symplectic leaf gives a dynamical system on the normal bundle of the leaf, which is called the first variation system. We show that the first variation system admits a compatible Hamiltonian structure if there exists a transversal to the leaf which is invariant with respect to the flow of the original system. In the case where the transverse Lie algebra of the symplectic leaf is semisimple, this condition is also necessary.
@article{MZM_2005_78_3_a0,
     author = {Yu. M. Vorob'ev},
     title = {On the {Linearization} of {Hamiltonian} {Systems} on {Poisson} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--330},
     publisher = {mathdoc},
     volume = {78},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a0/}
}
TY  - JOUR
AU  - Yu. M. Vorob'ev
TI  - On the Linearization of Hamiltonian Systems on Poisson Manifolds
JO  - Matematičeskie zametki
PY  - 2005
SP  - 323
EP  - 330
VL  - 78
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a0/
LA  - ru
ID  - MZM_2005_78_3_a0
ER  - 
%0 Journal Article
%A Yu. M. Vorob'ev
%T On the Linearization of Hamiltonian Systems on Poisson Manifolds
%J Matematičeskie zametki
%D 2005
%P 323-330
%V 78
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a0/
%G ru
%F MZM_2005_78_3_a0
Yu. M. Vorob'ev. On the Linearization of Hamiltonian Systems on Poisson Manifolds. Matematičeskie zametki, Tome 78 (2005) no. 3, pp. 323-330. http://geodesic.mathdoc.fr/item/MZM_2005_78_3_a0/

[1] Marsden J., Ratiu T., Rangel G., “Symplectic connections and the linearization of hamiltonian systems”, Proc. Roy. Soc. Edinburgh. Sect. A, 117 (1991), 329–380 | MR | Zbl

[2] Marsden J. E., Ratiu T. S., Introduction to Mechanics and Symmetry, Springer-Verlag, New York, 1994 | MR

[3] Karasev M. V., Vorobjev Yu. M., “Adapted connections, Hamiltonian dynamics, geometric phases, and quantization over isotropic submanifolds”, Amer. Math. Soc. Transl., 187:2 (1998), 203–326 | MR

[4] Flores Espinoza R., Vorobiev Yu. M., “Hamiltonian formalism for fiberwise linear systems”, Bol. Soc. Mat. Mexicana, 6:3 (2000), 213–234 | MR | Zbl

[5] Vorobiev Yu., “Hamiltonian equations of the first variation equations”, Mathematics, 191:4 (2000), 447–502

[6] Vorobjev Yu., “Coupling tensors and Poisson geometry near a single symplectic leaf”, Lie Algebroids, Banach Center Publ., 54, Warszawa, 2001, 249–274 | Zbl

[7] Vorobev Yu. M., “O linearizovannykh puassonovykh strukturakh”, Matem. zametki, 70:4 (2001), 486–493 | MR | Zbl

[8] Weinstein A., “The local structure of Poisson manifolds”, J. Diff. Geom., 18 (1983), 523–557 | MR | Zbl

[9] Cannas da Silva A., Weinstein A., Geometric Models for Noncommutative Algebras, Berkeley Math. Lecture Notes, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[10] Karasev M. V., Vorobjev Yu. M., “Deformations and cohomology of Poisson manifolds”, Lecture Notes in Math., 1453, Springer-Verlag, Berlin, 1990, 271–289