A metric of constant curvature on polycycles
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 223-233
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the following main theorem of the theory of $(r,q)$-polycycles. Suppose a nonseparable plane graph satisfies the following two conditions:
1) each internal face is an r-gon, where $r\ge3$;
2) the degree of each internal vertex is $q$, where $q\ge3$, and the degree of each boundary vertex is at most $q$ and at least 2.
Then it also possesses the following third property:
3) the vertices, the edges, and the internal faces form a cell complex.
Simple examples show that conditions 1) and 2) are independent even provided condition 3) is satisfied. These are the defining conditions for an $(r,q)$-polycycle.
@article{MZM_2005_78_2_a6,
author = {M. Deza and M. I. Shtogrin},
title = {A metric of constant curvature on polycycles},
journal = {Matemati\v{c}eskie zametki},
pages = {223--233},
publisher = {mathdoc},
volume = {78},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a6/}
}
M. Deza; M. I. Shtogrin. A metric of constant curvature on polycycles. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 223-233. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a6/