A metric of constant curvature on polycycles
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 223-233

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following main theorem of the theory of $(r,q)$-polycycles. Suppose a nonseparable plane graph satisfies the following two conditions: 1) each internal face is an r-gon, where $r\ge3$; 2) the degree of each internal vertex is $q$, where $q\ge3$, and the degree of each boundary vertex is at most $q$ and at least 2. Then it also possesses the following third property: 3) the vertices, the edges, and the internal faces form a cell complex. Simple examples show that conditions 1) and 2) are independent even provided condition 3) is satisfied. These are the defining conditions for an $(r,q)$-polycycle.
@article{MZM_2005_78_2_a6,
     author = {M. Deza and M. I. Shtogrin},
     title = {A metric of constant curvature on polycycles},
     journal = {Matemati\v{c}eskie zametki},
     pages = {223--233},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a6/}
}
TY  - JOUR
AU  - M. Deza
AU  - M. I. Shtogrin
TI  - A metric of constant curvature on polycycles
JO  - Matematičeskie zametki
PY  - 2005
SP  - 223
EP  - 233
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a6/
LA  - ru
ID  - MZM_2005_78_2_a6
ER  - 
%0 Journal Article
%A M. Deza
%A M. I. Shtogrin
%T A metric of constant curvature on polycycles
%J Matematičeskie zametki
%D 2005
%P 223-233
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a6/
%G ru
%F MZM_2005_78_2_a6
M. Deza; M. I. Shtogrin. A metric of constant curvature on polycycles. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 223-233. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a6/