A metric of constant curvature on polycycles
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 223-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the following main theorem of the theory of $(r,q)$-polycycles. Suppose a nonseparable plane graph satisfies the following two conditions: 1) each internal face is an r-gon, where $r\ge3$; 2) the degree of each internal vertex is $q$, where $q\ge3$, and the degree of each boundary vertex is at most $q$ and at least 2. Then it also possesses the following third property: 3) the vertices, the edges, and the internal faces form a cell complex. Simple examples show that conditions 1) and 2) are independent even provided condition 3) is satisfied. These are the defining conditions for an $(r,q)$-polycycle.
@article{MZM_2005_78_2_a6,
     author = {M. Deza and M. I. Shtogrin},
     title = {A metric of constant curvature on polycycles},
     journal = {Matemati\v{c}eskie zametki},
     pages = {223--233},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a6/}
}
TY  - JOUR
AU  - M. Deza
AU  - M. I. Shtogrin
TI  - A metric of constant curvature on polycycles
JO  - Matematičeskie zametki
PY  - 2005
SP  - 223
EP  - 233
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a6/
LA  - ru
ID  - MZM_2005_78_2_a6
ER  - 
%0 Journal Article
%A M. Deza
%A M. I. Shtogrin
%T A metric of constant curvature on polycycles
%J Matematičeskie zametki
%D 2005
%P 223-233
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a6/
%G ru
%F MZM_2005_78_2_a6
M. Deza; M. I. Shtogrin. A metric of constant curvature on polycycles. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 223-233. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a6/

[1] Deza M., Shtogrin M. I., “Primitivnye politsikly i gelitseny”, UMN, 54:6 (1999), 159–160 | MR | Zbl

[2] Shtogrin M. I., “Primitivnye politsikly: kriterii”, UMN, 54:6 (1999), 177–178 | MR | Zbl

[3] Deza M., Shtogrin M. I., “Beskonechnye primitivnye politsikly”, UMN, 55:1 (2000), 179–180 | MR

[4] Shtogrin M. I., “Neprimitivnye politsikly i gelitseny”, UMN, 55:2 (2000), 159–160 | MR

[5] Deza M., Shtogrin M. I., “Politsikly: simmetriya i vlozhimost”, UMN, 55:6 (2000), 129–130 | Zbl

[6] Deza M., Shtogrin M. I., “Clusters of cycles”, J. Geom. Phys., 40:3, 4 (2001), 302–319 | DOI

[7] Deza M., Shtogrin M. I., “Ekstremalnye i nerasshiryaemye politsikly”, Tr. MIAN, 239, Nauka, M., 2002, 127–145 | Zbl

[8] Deza M., Shtogrin M. I., “Kriterii vlozhimosti $(r,q)$-politsiklov”, UMN, 57:3 (2002), 149–150 | MR | Zbl

[9] Deza M., Shtogrin M. I., “Vlozhenie khimicheskikh grafov v giperkuby”, Matem. zametki, 68:3 (2000), 339–352 | MR | Zbl

[10] Deza M., Shtogrin M. I., “Mozaiki i ikh izometricheskie vlozheniya”, Izv. RAN. Ser. matem., 66:3 (2002), 3–22 | Zbl

[11] Kharari F., Teoriya grafov, Mir, M., 1973 | MR

[12] Kagan V. F., Osnovy teorii poverkhnostei, Ch. I, Gostekhizdat, M.–L., 1947 | MR

[13] Aleksandrov A. D., Vypuklye mnogogranniki, Gostekhizdat, M.–L., 1950

[14] Zeifert G., Trelfal V., Topologiya, ONTI NKTP SSSR, M.–L., 1938