Generalized Approximate Weak Greedy Algorithms
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 186-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study generalized approximate weak greedy algorithms. The main difference of these algorithms from approximate weak greedy algorithms proposed by R. Gribonval and M. Nielsen consists in that errors in the calculation of the coefficients can be prescribed in terms of not only their relative values, but also their absolute values. We present conditions on the parameters of generalized approximate weak greedy algorithms which are sufficient for the expansions resulting from the use of this algorithm to converge to the expanded element. It is shown that these conditions cannot be essentially weakened. We also study some questions of the convergence of generalized approximate weak greedy expansions with respect to orthonormal systems.
@article{MZM_2005_78_2_a3,
     author = {V. V. Galatenko and E. D. Livshits},
     title = {Generalized {Approximate} {Weak} {Greedy} {Algorithms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {186--201},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a3/}
}
TY  - JOUR
AU  - V. V. Galatenko
AU  - E. D. Livshits
TI  - Generalized Approximate Weak Greedy Algorithms
JO  - Matematičeskie zametki
PY  - 2005
SP  - 186
EP  - 201
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a3/
LA  - ru
ID  - MZM_2005_78_2_a3
ER  - 
%0 Journal Article
%A V. V. Galatenko
%A E. D. Livshits
%T Generalized Approximate Weak Greedy Algorithms
%J Matematičeskie zametki
%D 2005
%P 186-201
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a3/
%G ru
%F MZM_2005_78_2_a3
V. V. Galatenko; E. D. Livshits. Generalized Approximate Weak Greedy Algorithms. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 186-201. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a3/

[1] Gribonval R., Nielsen M., “Approximate weak greedy algorithms”, Adv. Comput. Math., 14:4 (2001), 361–378 | DOI | MR | Zbl

[2] Temlyakov V. N., “Weak greedy algorithms”, Adv. Comput. Math., 12:2–3 (2000), 213–227 | DOI | MR | Zbl

[3] Friedman J. H., Stueuzle W., “Projection pursuit regression”, J. Amer. Statist. Assoc., 76 (1981), 817–823 | DOI | MR

[4] Mallat S., Zhang Z., “Matching pursuit with time-frequency dictionaries”, IEEE Trans. Signal Process, 41:12 (1993), 3397–3415 | DOI | Zbl

[5] Jones L. K., “On a conjecture of Huber concerning the convergence of PP-regression”, Ann. Statist., 15 (1987), 880–882 | DOI | MR

[6] Jones L., “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and network training”, Ann. Statist., 20 (1992), 608–613 | DOI | MR | Zbl

[7] Rejtő L., Walter G. G., “Remarks on ptojection pursuit regression and density estimation”, Stochastic Anal. Appl., 10 (1992), 213–222 | DOI | Zbl

[8] Livshits E. D., Temlyakov V. N., “O skhodimosti slabogo gridi-algoritma”, Tr. MIAN, 232, Nauka, M., 2001, 236–247

[9] Temlyakov V. N., A criterion for convergence of weak greedy algorithms, http://www.math.sc.edu/\allowbreakĩmip/00.html

[10] Galatenko V. V., Livshitz E. D., “On the convergence of approximate weak greedy algorithms”, East J. Approx., 9:1 (2003), 43–49 | Zbl