The Generalized Pompeiu Metric in the Isometry Problem for Hyperspaces
Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 163-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

The isometries of the hyperspace of a compact subset of the real line endowed with the generalized Pompeiu metric are considered. It is proved that any such an isometry is generated by an isometry of the base space.
@article{MZM_2005_78_2_a0,
     author = {V. V. Aseev and A. V. Tetenov and A. P. Maksimova},
     title = {The {Generalized} {Pompeiu} {Metric} in the {Isometry} {Problem} for {Hyperspaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a0/}
}
TY  - JOUR
AU  - V. V. Aseev
AU  - A. V. Tetenov
AU  - A. P. Maksimova
TI  - The Generalized Pompeiu Metric in the Isometry Problem for Hyperspaces
JO  - Matematičeskie zametki
PY  - 2005
SP  - 163
EP  - 170
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a0/
LA  - ru
ID  - MZM_2005_78_2_a0
ER  - 
%0 Journal Article
%A V. V. Aseev
%A A. V. Tetenov
%A A. P. Maksimova
%T The Generalized Pompeiu Metric in the Isometry Problem for Hyperspaces
%J Matematičeskie zametki
%D 2005
%P 163-170
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a0/
%G ru
%F MZM_2005_78_2_a0
V. V. Aseev; A. V. Tetenov; A. P. Maksimova. The Generalized Pompeiu Metric in the Isometry Problem for Hyperspaces. Matematičeskie zametki, Tome 78 (2005) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/MZM_2005_78_2_a0/

[1] Kuratovskii K., Topologiya, T. 1, 1966; Т. 2, Мир, М., 1969

[2] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[3] Zarichnyi M. M., Fedorchuk V. V., “Kovariantnye funktory v kategoriyakh topologicheskikh prostranstv”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 28, VINITI, M., 1990, 47–95 | MR

[4] Michael E., “Topologies on spaces of subsets”, Trans. Amer. Math. Soc., 51:1 (1951), 152–182 | DOI | MR

[5] Gruber P. M., “The space of compact subsets of $E^d$”, Geom. Dedicata, 8 (1979), 87–90 | MR

[6] Gruber P. M., Letti G., “Isometries of the space of compact subsets of $E^d$”, Stud. Sci. Math. Hungar., 14 (1979), 169–181 | MR | Zbl

[7] Gruber P. M., Tichy R., “Isometries of spaces of compact or compact convex subsets of metric manifolds”, Monat. Math., 93:2 (1982), 117–126 | DOI | MR

[8] Bandt Ch., “On the metric structure of hyperspaces with Hausdorff metric”, Math. Nachr., 129 (1986), 175–183 | DOI | MR | Zbl

[9] Aleksandryan R. A., Mirzakhanyan E. A., Obschaya topologiya, Vysshaya shkola, M., 1979 | Zbl

[10] Albert G. E., “A note on quasi-metric spaces”, Bull. Amer. Math. Soc., 47:6 (1941), 479–482 | DOI | Zbl

[11] Reilly I. L., Subrahmanyan P. V., Vamanamurthy M. K., “Cauchy sequences in quasi-pseudo-metric spaces”, Monat. Math., 93:2 (1982), 127–140 | DOI | Zbl

[12] Kelly J. C., “Bitopological spaces”, Proc. London. Math. Soc., 13 (1963), 71–83 | DOI

[13] Sion M., Zelmer G., “On quasi-metrizability”, Canad. J. Math., 19:6 (1967), 1243–1249 | Zbl

[14] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, 3-e izd., Nauka, M., 1988