On the Orders of Nonlinear Approximations for Classes of Functions of Given Form
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 98-114

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\Delta^s_+$ is the set of functions $x\colon I\to\mathbb R$ on a finite interval $I$ such that the divided differences $[x;t_0,\dots,t_s]$ of order $s\in\mathbb N$ of these functions are nonnegative for all collections from $(s+1)$ different points $t_0,\dots,t_s\in I$. For all $s\in\mathbb N$ and $1\le p\le\infty$, we establish exact orders of best approximations by splines with free nodes and rational functions in the metrics of $L_p$ for classes $\Delta^s_+B_p:=\Delta^s_+\cap B_p$, where $B_p$ is the unit ball in $L_p$. We also establish the asymptotics of pseudodimensional widths in $L_p$ of these classes of functions.
@article{MZM_2005_78_1_a9,
     author = {V. N. Konovalov},
     title = {On the {Orders} of {Nonlinear} {Approximations} for {Classes} of {Functions} of {Given} {Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {98--114},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a9/}
}
TY  - JOUR
AU  - V. N. Konovalov
TI  - On the Orders of Nonlinear Approximations for Classes of Functions of Given Form
JO  - Matematičeskie zametki
PY  - 2005
SP  - 98
EP  - 114
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a9/
LA  - ru
ID  - MZM_2005_78_1_a9
ER  - 
%0 Journal Article
%A V. N. Konovalov
%T On the Orders of Nonlinear Approximations for Classes of Functions of Given Form
%J Matematičeskie zametki
%D 2005
%P 98-114
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a9/
%G ru
%F MZM_2005_78_1_a9
V. N. Konovalov. On the Orders of Nonlinear Approximations for Classes of Functions of Given Form. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 98-114. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a9/