On the Orders of Nonlinear Approximations for Classes of Functions of Given Form
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 98-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\Delta^s_+$ is the set of functions $x\colon I\to\mathbb R$ on a finite interval $I$ such that the divided differences $[x;t_0,\dots,t_s]$ of order $s\in\mathbb N$ of these functions are nonnegative for all collections from $(s+1)$ different points $t_0,\dots,t_s\in I$. For all $s\in\mathbb N$ and $1\le p\le\infty$, we establish exact orders of best approximations by splines with free nodes and rational functions in the metrics of $L_p$ for classes $\Delta^s_+B_p:=\Delta^s_+\cap B_p$, where $B_p$ is the unit ball in $L_p$. We also establish the asymptotics of pseudodimensional widths in $L_p$ of these classes of functions.
@article{MZM_2005_78_1_a9,
     author = {V. N. Konovalov},
     title = {On the {Orders} of {Nonlinear} {Approximations} for {Classes} of {Functions} of {Given} {Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {98--114},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a9/}
}
TY  - JOUR
AU  - V. N. Konovalov
TI  - On the Orders of Nonlinear Approximations for Classes of Functions of Given Form
JO  - Matematičeskie zametki
PY  - 2005
SP  - 98
EP  - 114
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a9/
LA  - ru
ID  - MZM_2005_78_1_a9
ER  - 
%0 Journal Article
%A V. N. Konovalov
%T On the Orders of Nonlinear Approximations for Classes of Functions of Given Form
%J Matematičeskie zametki
%D 2005
%P 98-114
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a9/
%G ru
%F MZM_2005_78_1_a9
V. N. Konovalov. On the Orders of Nonlinear Approximations for Classes of Functions of Given Form. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 98-114. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a9/

[1] Bullen P. S., “A criterion for $n$-convexity”, Pacific J. Math., 36 (1971), 81–98 | MR | Zbl

[2] Roberts A. W., Varberg D. E., Convex Functions, Academic Press, New York, 1973 | MR

[3] Pečarić J. E., Proschan F., Tong Y. L., Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering, 187, Academic Press, Boston, 1992 | MR

[4] Bulanov A. P., “O poryadke priblizheniya vypuklykh funktsii ratsionalnymi funktsiyami”, Izv. AN SSSR. Ser. matem., 33:5 (1969), 1132–1148 | MR | Zbl

[5] Popov V. A., Petrushev P. P., “Tochnyi poryadok nailuchshego ravnomernogo priblizheniya vypuklykh funktsii ratsionalnymi funktsiyami”, Matem. sb., 103 (145):2 (6) (1977), 285–292 | Zbl

[6] Haussler D., “Decision theoretic generalizations of the PAC model for neural net and other learning applications”, Information and Computation, 100 (1992), 78–150 | DOI | Zbl

[7] Ratsaby J., Maiorov V., “Generalization of the PAC-model for learning with partial information”, Proc. of the 3rd European Conference on Computational Learning Theory (EuroCOLT 97), Springer-Verlag, Berlin, 1997 | MR

[8] Ratsaby J., Maiorov V., “On the value of partial information for learning from examples”, J. Complexity, 13 (1997), 509–544 | DOI | Zbl

[9] Lorentz G. G., van Golitschek M., Makovoz Y., Constructive Approximation, Advanced Problems, Springer-Verlag, New York, 1996

[10] Maiorov V., Ratsaby J., “The degree of approximation of sets in Euclidian space using sets with bounded Vapnik–Chervonenkis dimension”, Discrete Appl. Math., 88 (1998), 81–93 | DOI

[11] Haussler D., “Sphere packing numbers for subsets of the boolean $n$-cube with bounded Vapnik–Chervonenkis dimension”, J. Combin. Theory. Ser. A, 69 (1995), 217–232 | DOI | Zbl

[12] Maiorov V., Ratsaby J., “On the degree of approximation by manifolds of finite pseudo-dimension”, Constr. Approximation, 15 (1999), 291–300 | DOI | Zbl

[13] Konovalov V. N., “Formosokhranyayuschie poperechniki tipa Kolmogorova klassov $s$-monotonnykh integriruemykh funktsii”, Ukr. matem. zh., 55:7 (2004), 901–926