Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_78_1_a9, author = {V. N. Konovalov}, title = {On the {Orders} of {Nonlinear} {Approximations} for {Classes} of {Functions} of {Given} {Form}}, journal = {Matemati\v{c}eskie zametki}, pages = {98--114}, publisher = {mathdoc}, volume = {78}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a9/} }
V. N. Konovalov. On the Orders of Nonlinear Approximations for Classes of Functions of Given Form. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 98-114. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a9/
[1] Bullen P. S., “A criterion for $n$-convexity”, Pacific J. Math., 36 (1971), 81–98 | MR | Zbl
[2] Roberts A. W., Varberg D. E., Convex Functions, Academic Press, New York, 1973 | MR
[3] Pečarić J. E., Proschan F., Tong Y. L., Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering, 187, Academic Press, Boston, 1992 | MR
[4] Bulanov A. P., “O poryadke priblizheniya vypuklykh funktsii ratsionalnymi funktsiyami”, Izv. AN SSSR. Ser. matem., 33:5 (1969), 1132–1148 | MR | Zbl
[5] Popov V. A., Petrushev P. P., “Tochnyi poryadok nailuchshego ravnomernogo priblizheniya vypuklykh funktsii ratsionalnymi funktsiyami”, Matem. sb., 103 (145):2 (6) (1977), 285–292 | Zbl
[6] Haussler D., “Decision theoretic generalizations of the PAC model for neural net and other learning applications”, Information and Computation, 100 (1992), 78–150 | DOI | Zbl
[7] Ratsaby J., Maiorov V., “Generalization of the PAC-model for learning with partial information”, Proc. of the 3rd European Conference on Computational Learning Theory (EuroCOLT 97), Springer-Verlag, Berlin, 1997 | MR
[8] Ratsaby J., Maiorov V., “On the value of partial information for learning from examples”, J. Complexity, 13 (1997), 509–544 | DOI | Zbl
[9] Lorentz G. G., van Golitschek M., Makovoz Y., Constructive Approximation, Advanced Problems, Springer-Verlag, New York, 1996
[10] Maiorov V., Ratsaby J., “The degree of approximation of sets in Euclidian space using sets with bounded Vapnik–Chervonenkis dimension”, Discrete Appl. Math., 88 (1998), 81–93 | DOI
[11] Haussler D., “Sphere packing numbers for subsets of the boolean $n$-cube with bounded Vapnik–Chervonenkis dimension”, J. Combin. Theory. Ser. A, 69 (1995), 217–232 | DOI | Zbl
[12] Maiorov V., Ratsaby J., “On the degree of approximation by manifolds of finite pseudo-dimension”, Constr. Approximation, 15 (1999), 291–300 | DOI | Zbl
[13] Konovalov V. N., “Formosokhranyayuschie poperechniki tipa Kolmogorova klassov $s$-monotonnykh integriruemykh funktsii”, Ukr. matem. zh., 55:7 (2004), 901–926