Asymptotics of Bounded-at-Infinity Solutions of the Principal Resonance Equation
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 85-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of six nonlinear differential equations obtained by averaging fast forced oscillations. The main result consist in the construction of the asymptotics at infinity for the general solution with bounded amplitudes. We show that the structure of asymptotic series depends on the parameters so that the coefficients of the series vary in jumps on the resonance set.
@article{MZM_2005_78_1_a8,
     author = {L. A. Kalyakin and Yu. Yu. Bagderina},
     title = {Asymptotics of {Bounded-at-Infinity} {Solutions} of the {Principal} {Resonance} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {85--97},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a8/}
}
TY  - JOUR
AU  - L. A. Kalyakin
AU  - Yu. Yu. Bagderina
TI  - Asymptotics of Bounded-at-Infinity Solutions of the Principal Resonance Equation
JO  - Matematičeskie zametki
PY  - 2005
SP  - 85
EP  - 97
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a8/
LA  - ru
ID  - MZM_2005_78_1_a8
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%A Yu. Yu. Bagderina
%T Asymptotics of Bounded-at-Infinity Solutions of the Principal Resonance Equation
%J Matematičeskie zametki
%D 2005
%P 85-97
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a8/
%G ru
%F MZM_2005_78_1_a8
L. A. Kalyakin; Yu. Yu. Bagderina. Asymptotics of Bounded-at-Infinity Solutions of the Principal Resonance Equation. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 85-97. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a8/

[1] Blombergen N., Nelineinaya optika, Mir, M., 1966

[2] Kaplan F. E., Krivtsov Yu. A., Rylov V. A., Parametricheskie generatory i deliteli chastoty, Sovetskoe radio, M., 1966

[3] Naugolnykh K. A., Ostrovskii L. A., Nelineinye volnovye protsessy v akustike, Nauka, M., 1990 | MR

[4] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974

[5] Yariv Sh., Friedland L., “Autoresonant interaction of three nonlinear adiabatic oscillators”, Phys. Rev. E, 48:4 (1993), 3072–3076 | DOI

[6] Rokni U., Friedland L., “Double autoresonance in two-dimensional dynamical systems”, Phys. Rev. E, 59:5 (1939), 5242–5252 | DOI | MR

[7] Zaslavskii G. M., Sagdeev R. Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1977 | MR

[8] Fajans J., Friedland L., “Autoresonant (nonstationary) excitation of a pendulum, Plutinos, plasmas and other nonlinear oscillators”, Amer. J. Phys., 69:10 (2001), 1096–1102 | DOI

[9] Kalyakin L. A., “Asimptoticheskii analiz modeli avtorezonansa”, Dokl. RAN, 378:5 (2001), 594–597

[10] Kalyakin L. A., “Asimptotika reshenii uravnenii glavnogo rezonansa na beskonechnosti”, Dokl. RAN, 388:3 (2003), 305–308

[11] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo Moskovskogo un-ta, M., 1996

[12] Bryuno A. D., Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, M., 1998

[13] Kuzmak G. E., “Asimptoticheskie resheniya nelineinykh differentsialnykh uravnenii s peremennymi koeffitsientami”, PMM, 23:3 (1951), 519–506

[14] Fedoryuk M. V., “Metod VKB dlya nelineinogo uravneniya vtorogo poryadka”, ZhVMiMF, 26:2 (1986), 198–210

[15] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192

[16] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978

[17] Kalyakin L. A., “Justification of asymptotic expansion for the principal resonance equations”, Proc. Steklov Inst. Math. Suppl. 1, 2003, S108–S122