Elementary Birational Maps between Mori Toric Fiber 3-Spaces
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 132-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we classify elementary equivariant birational maps (links) between Mori toric fiber 3-spaces. These links are naturally divided into several classes, depending on the dimension of the bases. For classes containing finitely many links, we present a complete list, in other cases we provide a local description (see the statements in Sec. 4). Almost all the proofs are of combinatorial nature, which is why we present proofs of the results from Sec. 3 only.
@article{MZM_2005_78_1_a12,
     author = {K. A. Shramov},
     title = {Elementary {Birational} {Maps} between {Mori} {Toric} {Fiber} {3-Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {132--139},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a12/}
}
TY  - JOUR
AU  - K. A. Shramov
TI  - Elementary Birational Maps between Mori Toric Fiber 3-Spaces
JO  - Matematičeskie zametki
PY  - 2005
SP  - 132
EP  - 139
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a12/
LA  - ru
ID  - MZM_2005_78_1_a12
ER  - 
%0 Journal Article
%A K. A. Shramov
%T Elementary Birational Maps between Mori Toric Fiber 3-Spaces
%J Matematičeskie zametki
%D 2005
%P 132-139
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a12/
%G ru
%F MZM_2005_78_1_a12
K. A. Shramov. Elementary Birational Maps between Mori Toric Fiber 3-Spaces. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 132-139. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a12/

[1] Matsuki K., Introduction to the Mori Program, Universitext, Springer-Verlag, New York, 2002 | MR | Zbl

[2] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | Zbl

[3] Kawamata Y., “Divisorial contractions to $3$-dimensional terminal quotient singularities”, Higher-Dimensional Complex Varieties (Trento, 1994), de Gruyter, Berlin, 1996, 241–246 | MR | Zbl

[4] Borisov A. A., Borisov L. A., “Osobye toricheskie mnogoobraziya Fano”, Matem. sb., 183:2 (1992), 134–141 | MR | Zbl

[5] Klemens Kh., Kollar Ya., Mori S., Mnogomernaya kompleksnaya geometriya, Mir, M., 1993