Elementary Birational Maps between Mori Toric Fiber 3-Spaces
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 132-139
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper, we classify elementary equivariant birational maps (links) between Mori toric fiber 3-spaces. These links are naturally divided into several classes, depending on the dimension of the bases. For classes containing finitely many links, we present a complete list, in other cases we provide a local description (see the statements in Sec. 4). Almost all the proofs are of combinatorial nature, which is why we present proofs of the results from Sec. 3 only.
@article{MZM_2005_78_1_a12,
author = {K. A. Shramov},
title = {Elementary {Birational} {Maps} between {Mori} {Toric} {Fiber} {3-Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {132--139},
year = {2005},
volume = {78},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a12/}
}
K. A. Shramov. Elementary Birational Maps between Mori Toric Fiber 3-Spaces. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 132-139. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a12/
[1] Matsuki K., Introduction to the Mori Program, Universitext, Springer-Verlag, New York, 2002 | MR | Zbl
[2] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | Zbl
[3] Kawamata Y., “Divisorial contractions to $3$-dimensional terminal quotient singularities”, Higher-Dimensional Complex Varieties (Trento, 1994), de Gruyter, Berlin, 1996, 241–246 | MR | Zbl
[4] Borisov A. A., Borisov L. A., “Osobye toricheskie mnogoobraziya Fano”, Matem. sb., 183:2 (1992), 134–141 | MR | Zbl
[5] Klemens Kh., Kollar Ya., Mori S., Mnogomernaya kompleksnaya geometriya, Mir, M., 1993