Convexity of Chebyshev Sets Contained in a Subspace
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Convex Chebyshev sets $M$ in a linear space $X$ with norm or nonsymmetric norm $(X,\|\cdot\|)$ which are contained in a subspace $H$ of $X$ are considered. It is proved that if $|\cdot|_{H,\theta}$ is the nonsymmetric norm on $H$ determined by the Minkowski functional of $(B-\theta)\cap H$, where $B$ is the unit ball of $X$ and $\|\theta\|1$, with respect to 0, then $M$ is a Chebyshev set in $(H,|\cdot|_{H,\theta})$ for any $\theta$. From this result sufficient and necessary conditions for the convexity of Chebyshev sets and bounded Chebyshev sets contained in a subspace $H$ of $X$ are derived.
@article{MZM_2005_78_1_a0,
     author = {A. R. Alimov},
     title = {Convexity of {Chebyshev} {Sets} {Contained} in a {Subspace}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Convexity of Chebyshev Sets Contained in a Subspace
JO  - Matematičeskie zametki
PY  - 2005
SP  - 3
EP  - 15
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a0/
LA  - ru
ID  - MZM_2005_78_1_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Convexity of Chebyshev Sets Contained in a Subspace
%J Matematičeskie zametki
%D 2005
%P 3-15
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a0/
%G ru
%F MZM_2005_78_1_a0
A. R. Alimov. Convexity of Chebyshev Sets Contained in a Subspace. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a0/

[1] Vlasov L. P., “Approksimativnye svoistva mnozhestv v lineinykh normirovannykh prostranstvakh”, UMN, 28:6 (1973), 3–66 | MR | Zbl

[2] Balaganskii V. S., Vlasov L. P., “Problema vypuklosti chebyshëvskikh mnozhestv”, UMN, 51:6 (1996), 125–188 | MR

[3] Karlov M. I., Tsarkov I. G., “Vypuklost i svyaznost chebyshëvskikh mnozhestv i solnts”, Fundament. i prikl. matem., 3:4 (1997), 967–978 | MR | Zbl

[4] Tsarkov I. G., “Kompaktnye i slabo kompaktnye chebyshëvskie mnozhestva v lineinykh normirovannykh prostranstvakh”, Tr. MIAN, 189, Nauka, M., 1989, 169–184

[5] Tsarkov I. G., “Ogranichennye chebyshëvskie mnozhestva v konechnomernykh banakhovykh prostranstvakh”, Matem. zametki, 36:1 (1984), 73–87 | MR | Zbl

[6] Brown A. L., “Chebyshev sets and the shapes of convex bodies”, Methods of Functional Analysis in Approximation Theory, Proc. Intern. Conf. (Indian Inst. Techn. Bombay, 16–20.XII.1985), Internat. Series of Numerical Math., 76, ed. C. A. Micchelli, Birkhäuser, Basel, 1986, 97–121 | MR

[7] Brown A. L., “On the problem of characterising suns in finite-dimensional spaces”, Rend. Circ. Mat. Palermo (2) Suppl., 68:1 (2002), 315–328 | MR | Zbl

[8] Brøndsted A., “Convex sets and Chebyshev sets, II”, Math. Scand., 17:1 (1966), 5–15 | MR

[9] Borodin P. A., “Teorema Banakha–Mazura dlya prostranstv s nesimmetrichnoi normoi i ee prilozheniya v vypuklom analize”, Matem. zametki, 69:3 (2001), 329–337 | Zbl

[10] Efimov N. V., Stechkin S. B., “Nekotorye svoistva chebyshëvskikh mnozhestv”, Dokl. AN SSSR, 118:1 (1958), 17–19 | Zbl

[11] Oshman E. V., “Chebyshëvskie mnozhestva i nepreryvnost metricheskoi proektsii”, Izv. vuzov. Matem., 1970, no. 9, 78–82 | Zbl

[12] Kozko A. I., “Mnogomernye neravenstva raznykh metrik v prostranstvakh s nesimmetrichnoi normoi”, Matem. sb., 189:9 (1998), 85–106 | Zbl

[13] Künzi H.-P. A., “Nonsymmetric distances and their associated topologies: About the origin of basic ideas in the area of asymmetric topology”, Handbook of the History of General Topology, V. 3, eds. C. E. Aull, R. Lowen, Kluwer, Dordrecht, 2001, 853–968 | Zbl

[14] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial USSR, M., 2000

[15] García-Raffi L. M., Romaguera S., Sánchez-Pérez E. A., “Sequence spaces and asymmetric norms in the theory of computational complexity”, Math. Comput., 36 (2002), 1–11 | Zbl

[16] Berens H., Hetzelt L., “Suns and contractive retracts in the plane”, Teoriya priblizhenii funktsii, Trudy mezhd. konf. (Kiev, 31 maya–5 iyunya, 1983), eds. N. P. Korneichuk i dr., Nauka, M., 1987, 483–487

[17] Alimov A. R., Approksimativnye svoistva mnozhestv v lineinykh prostranstvakh s nesimmetrichnoi normoi, Diss. ... k. f.-m. n., MGU, M., 1997

[18] Berdyshev V. I., “K voprosu o chebyshëvskikh mnozhestvakh”, Dokl. AN AzSSR, 22:9 (1966), 3–5 | Zbl

[19] Brown A. L., “Chebyshev sets and facial systems of convex sets in finite-dimensional spaces”, Proc. London Math. Soc., 41 (1980), 297–339 | DOI | Zbl

[20] Alimov A. R., “O strukture dopolneniya k chebyshëvskim mnozhestvam”, Funktsion. analiz i prilozh., 35:3 (2001), 19–27 | Zbl

[21] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985