Convexity of Chebyshev Sets Contained in a Subspace
Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

Convex Chebyshev sets $M$ in a linear space $X$ with norm or nonsymmetric norm $(X,\|\cdot\|)$ which are contained in a subspace $H$ of $X$ are considered. It is proved that if $|\cdot|_{H,\theta}$ is the nonsymmetric norm on $H$ determined by the Minkowski functional of $(B-\theta)\cap H$, where $B$ is the unit ball of $X$ and $\|\theta\|1$, with respect to 0, then $M$ is a Chebyshev set in $(H,|\cdot|_{H,\theta})$ for any $\theta$. From this result sufficient and necessary conditions for the convexity of Chebyshev sets and bounded Chebyshev sets contained in a subspace $H$ of $X$ are derived.
@article{MZM_2005_78_1_a0,
     author = {A. R. Alimov},
     title = {Convexity of {Chebyshev} {Sets} {Contained} in a {Subspace}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Convexity of Chebyshev Sets Contained in a Subspace
JO  - Matematičeskie zametki
PY  - 2005
SP  - 3
EP  - 15
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a0/
LA  - ru
ID  - MZM_2005_78_1_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Convexity of Chebyshev Sets Contained in a Subspace
%J Matematičeskie zametki
%D 2005
%P 3-15
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a0/
%G ru
%F MZM_2005_78_1_a0
A. R. Alimov. Convexity of Chebyshev Sets Contained in a Subspace. Matematičeskie zametki, Tome 78 (2005) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/MZM_2005_78_1_a0/