Stepwise Gauge Equivalence of Differential Operators
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 917-929 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the relation between the notion of gauge equivalence and solutions of certain systems of nonlinear partial differential equations. This relation is based on stepwise gauge equivalence.
@article{MZM_2005_77_6_a9,
     author = {S. P. Khekalo},
     title = {Stepwise {Gauge} {Equivalence} of {Differential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {917--929},
     year = {2005},
     volume = {77},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a9/}
}
TY  - JOUR
AU  - S. P. Khekalo
TI  - Stepwise Gauge Equivalence of Differential Operators
JO  - Matematičeskie zametki
PY  - 2005
SP  - 917
EP  - 929
VL  - 77
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a9/
LA  - ru
ID  - MZM_2005_77_6_a9
ER  - 
%0 Journal Article
%A S. P. Khekalo
%T Stepwise Gauge Equivalence of Differential Operators
%J Matematičeskie zametki
%D 2005
%P 917-929
%V 77
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a9/
%G ru
%F MZM_2005_77_6_a9
S. P. Khekalo. Stepwise Gauge Equivalence of Differential Operators. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 917-929. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a9/

[1] Berest Yu. Yu., Veselov A. P., “Printsip Gyuigensa i integriruemost”, UMN, 49:6 (1994), 8–78 | MR

[2] Berest Y., “The problem of lacunas and analysis on root systems”, Trans. Amer. Math. Soc., 352:8 (2000), 3743–3776 | DOI | MR | Zbl

[3] Stellmacher K. L., “Ein Beispeil einer Huygennchen Differentialgleichung”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl., 10 (1953), 133–138 | MR

[4] Lagnese J. E., Stellmacher K. L., “A method of generating classes of Huygens' operators”, J. Math. Mech., 17:5 (1967), 461–472 | MR | Zbl

[5] Berest Y., Molchanov Y., “Fundamental solution for partial differential equations with reflection group invariance”, J. Math. Phys., 36:8 (1995), 4324–4339 | DOI | Zbl

[6] Berest Yu. Yu., Veselov A. P., “Problema Adamara i gruppy Kokstera: novye primery gyuigensovykh uravnenii”, Funktsion. analiz i ego prilozh., 28:1 (1994), 3–15

[7] Berest Y., “Hierarchies of Huygens' operators and Hadamard's conjecture”, Acta Appl. Math., 53 (1998), 125–185 | DOI | MR | Zbl

[8] Babich V. M., “Anzatts Adamara, ego analogi, obobscheniya, prilozheniya”, Algebra i analiz, 3:5 (1991), 1–37

[9] Wilson G., “Bispectral commutative ordinary differential operators”, J. Reine Angew. Math., 442 (1993), 177–204 | Zbl

[10] Berest Y. Y., Loutsenko I. M., “Huygens' principle in Minkowski spaces and soliton solutions of the Korteweg–de Vries equation”, Comm. Math. Phys., 190 (1997), 113–132 | DOI | Zbl

[11] Berest Y., “Solution of a restricted Hadamard problem on Minkowski spaces”, Comm. Pure. Appl. Math., 50 (1997), 1019–1052 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[12] Khekalo S., “The gauge relation of differential operators and Huygens' principle”, Day on Diffraction, Saint-Petersburg, 2002, 32–34

[13] Khekalo S. P., “Kalibrovochnaya ekvivalentnost differentsialnykh operatorov v chastnykh proizvodnykh”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam, Tezisy dokl., Suzdal, 2002, 138–140

[14] Khekalo S., “The gauge related differential operators”, Day on Diffraction, Saint-Petersburg, 2003, 42–43

[15] Khekalo S. P., “Izogyuigensovy deformatsii odnorodnykh differentsialnykh operatorov, svyazannykh so spetsialnym konusom ranga tri”, Matem. zametki, 70:6 (2001), 927–940 | Zbl

[16] Khekalo S. P., “Potentsialy Rissa v prostranstve pryamougolnykh matrits i izogyuigensova deformatsiya operatora Keli–Laplasa”, Dokl. RAN, 376:2 (2001), 168–170 | Zbl