On the Cone of Bounded Lower Semicontinuous Functions
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 886-902.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the cone of bounded lower semicontinuous functions defined on a Tychonoff space $X$ is algebraically and structurally isomorphic and isometric to a convex cone contained in the cone of all bounded lower semicontinuous functions defined on the Stone-Cech compactification $\beta X$ if and only if the space $X$ is normal. We apply this theorem to the study of relationship between a class of multivalued maps and sublinear operators. Using these results, we obtain new proofs of theorems about continuous selections.
@article{MZM_2005_77_6_a7,
     author = {Yu. E. Linke},
     title = {On the {Cone} of {Bounded} {Lower} {Semicontinuous} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {886--902},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a7/}
}
TY  - JOUR
AU  - Yu. E. Linke
TI  - On the Cone of Bounded Lower Semicontinuous Functions
JO  - Matematičeskie zametki
PY  - 2005
SP  - 886
EP  - 902
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a7/
LA  - ru
ID  - MZM_2005_77_6_a7
ER  - 
%0 Journal Article
%A Yu. E. Linke
%T On the Cone of Bounded Lower Semicontinuous Functions
%J Matematičeskie zametki
%D 2005
%P 886-902
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a7/
%G ru
%F MZM_2005_77_6_a7
Yu. E. Linke. On the Cone of Bounded Lower Semicontinuous Functions. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 886-902. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a7/

[1] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, GIFML, M., 1961

[2] Dei M., Normirovannye lineinye prostranstva, IL, M., 1961

[3] Gelfand I. M., “Abstraktnye funktsii i lineinye operatory”, Matem. sb., 4 (1938), 235–286

[4] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[5] Burbaki N., Obschaya topologiya. Ispolzovanie veschestvennykh chisel v obschei topologii. Funktsionalnye prostranstva. Svodka rezultatov, Nauka, M., 1975

[6] Burbaki N., Obschaya topologiya. Topologicheskie gruppy, chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969 | MR

[7] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[8] Michael E., “Continuous selections, 1”, Ann. of Math., 63:2 (1956), 361–382 | DOI | MR | Zbl

[9] Repovsh D., Semenov P. V., “Teoriya E. Maikla nepreryvnykh selektsii. Razvitie i prilozheniya”, UMN, 49:6 (1994), 151–190 | Zbl

[10] Linke Yu. E., “Primenenie teoremy Maikla i ee obrascheniya k sublineinym operatoram”, Matem. zametki, 52:1 (1992), 67–75

[11] Linke Yu. E., “Metod sublineinykh operatorov i zadachi o selektorakh”, Dokl. RAN, 347:4 (1996), 446–448 | Zbl

[12] Felps R., Lektsii o teoremakh Shoke, Mir, M., 1968

[13] Van de Vel M., “A selection theorem for topological convex structures”, Trans. Amer. Math. Soc., 336:2 (1993), 463–496 | DOI | Zbl

[14] Kusraev A. G., Kutateladze S. S., Subdifferentsialnoe ischislenie, Nauka, Novosibirsk, 1987

[15] Hasumi M., “A continuous selections theorem for extremally disconnected spaces”, Math. Ann., 179:2 (1969), 83–89 | DOI | Zbl