On the Cone of Bounded Lower Semicontinuous Functions
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 886-902

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the cone of bounded lower semicontinuous functions defined on a Tychonoff space $X$ is algebraically and structurally isomorphic and isometric to a convex cone contained in the cone of all bounded lower semicontinuous functions defined on the Stone-Cech compactification $\beta X$ if and only if the space $X$ is normal. We apply this theorem to the study of relationship between a class of multivalued maps and sublinear operators. Using these results, we obtain new proofs of theorems about continuous selections.
@article{MZM_2005_77_6_a7,
     author = {Yu. E. Linke},
     title = {On the {Cone} of {Bounded} {Lower} {Semicontinuous} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {886--902},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a7/}
}
TY  - JOUR
AU  - Yu. E. Linke
TI  - On the Cone of Bounded Lower Semicontinuous Functions
JO  - Matematičeskie zametki
PY  - 2005
SP  - 886
EP  - 902
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a7/
LA  - ru
ID  - MZM_2005_77_6_a7
ER  - 
%0 Journal Article
%A Yu. E. Linke
%T On the Cone of Bounded Lower Semicontinuous Functions
%J Matematičeskie zametki
%D 2005
%P 886-902
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a7/
%G ru
%F MZM_2005_77_6_a7
Yu. E. Linke. On the Cone of Bounded Lower Semicontinuous Functions. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 886-902. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a7/