On the Rate of Approximation of Closed Jordan Curves by Lemniscates
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 861-876.

Voir la notice de l'article provenant de la source Math-Net.Ru

As proved by Hilbert, it is, in principle, possible to construct an arbitrarily close approximation in the Hausdorff metric to an arbitrary closed Jordan curve $\Gamma$ in the complex plane $\{z\}$ by lemniscates generated by polynomials $P(z)$. In the present paper, we obtain quantitative upper bounds for the least deviations $H_n(\Gamma)$ (in this metric) from the curve $\Gamma$ of the lemniscates generated by polynomials of a given degree $n$ in terms of the moduli of continuity of the conformal mapping of the exterior of $\Gamma$ onto the exterior of the unit circle, of the mapping inverse to it, and of the Green function with a pole at infinity for the exterior of $\Gamma$. For the case in which the curve $\Gamma$ is analytic, we prove that $H_n(\Gamma)=O(q^n)$, $0\le q=q(\Gamma)1$, $n\to\infty$.
@article{MZM_2005_77_6_a5,
     author = {O. N. Kosukhin},
     title = {On the {Rate} of {Approximation} of {Closed} {Jordan} {Curves} by {Lemniscates}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {861--876},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a5/}
}
TY  - JOUR
AU  - O. N. Kosukhin
TI  - On the Rate of Approximation of Closed Jordan Curves by Lemniscates
JO  - Matematičeskie zametki
PY  - 2005
SP  - 861
EP  - 876
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a5/
LA  - ru
ID  - MZM_2005_77_6_a5
ER  - 
%0 Journal Article
%A O. N. Kosukhin
%T On the Rate of Approximation of Closed Jordan Curves by Lemniscates
%J Matematičeskie zametki
%D 2005
%P 861-876
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a5/
%G ru
%F MZM_2005_77_6_a5
O. N. Kosukhin. On the Rate of Approximation of Closed Jordan Curves by Lemniscates. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 861-876. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a5/

[1] Hilbert D., “Über die Entwicklung einer beliebigen analytischen Funktion einer Variabeln in eine unendliche nach ganzen rationalen Funktionen fortschreitende Reihe”, Nachr. Königl. Gesell. Wiss. Göttingen, Math.\kern-3pt{-}Phys. Kl., 1897, 63–70

[2] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[3] Markushevich A. I., Teoriya analiticheskikh funktsii, Nauka, M., 1968 | Zbl

[4] Tamrazov P. M., “Ekstremalnye konformnye otobrazheniya i polyusy kvadratichnykh differentsialov”, Izv. AN SSSR. Ser. matem., 32:5 (1968), 1033–1043 | MR | Zbl

[5] Dolzhenko E. P., “O konformnykh otobrazheniyakh zhordanovykh oblastei”, Vestn. MGU. Ser. 1. Matem., mekh., 1999, no. 4, 66–68 | MR | Zbl

[6] Warschawski S. E., “On differentiability at the boundary in conformal mapping”, Proc. Amer. Math. Soc., 12:4 (1961), 614–620 | DOI | MR | Zbl