Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_6_a3, author = {M. R. Dostanic}, title = {The {Norm} and {Regularized} {Trace} of the {Cauchy} {Transform}}, journal = {Matemati\v{c}eskie zametki}, pages = {844--853}, publisher = {mathdoc}, volume = {77}, number = {6}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a3/} }
M. R. Dostanic. The Norm and Regularized Trace of the Cauchy Transform. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 844-853. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a3/
[1] Anderson J. M., Hinkkanen A., “The Cauchy transform on bounded domain”, Proc. Amer. Math. Soc., 107 (1989), 179–185 | DOI | Zbl
[2] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965
[3] Watson G. N., A Treatise of the Theory of Bessel Functions, 2nd edition, Cambridge Univ. Press, Cambridge, 1962
[4] Beitman G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1974
[5] Dostanić M. R., “Norm estimate of the Cauchy transform on $L^p(\Omega)$”, Integral Equations Operator Theory (to appear)
[6] Boyd D. W., “Best constants in a class of integral inequalities”, Pacific J. Math., 30:2 (1969), 367–383 | Zbl
[7] Dostanić M. R., “The properties of the Cauchy transform on a bounded domain”, J. Operator Theory, 36 (1996), 233–247 | Zbl
[8] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | Zbl
[9] Dostanić M. R., “Spectral properties of the Cauchy operator and its product with Bergman's projection on a bounded domain”, Proc. London Math. Soc. (3), 76 (1998), 667–684 | DOI | Zbl
[10] Dostanić M. R., “Spectral properties of the operator or Riesz potential type”, Proc. Amer. Math. Soc., 126:8 (1998), 2291–2297 | DOI | Zbl
[11] Gorbachuk V. I., Gorbachuk M. L., Granichnye zadachi dlya differentsialnykh uravnenii s operatornymi koeffitsientami, Naukova dumka, Kiev, 1984 | Zbl
[12] Anderson J. M., Khavinson D., Lomonosov V., “Spectral properties of some integral operators arising in potential theory”, Quart. J. Math. (Oxford). Ser. 2, 1992, 387–407 | Zbl