On the Properties of Accretive-Dissipative Matrices
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 832-843
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a complex $(n\times n)$ matrix, and let $A=B+iC$, $B=B^*$, $C=C^*$ be its Toeplitz decomposition. Then $A$ is said to be (strictly) accretive if $B>0$ and (strictly) dissipative if $C>0$. We study the properties of matrices that satisfy both these conditions, in other words, of accretive-dissipative matrices. In many respects, these matrices behave as numbers in the first quadrant of the complex plane. Some other properties are natural extensions of the corresponding properties of Hermitian positive-definite matrices.
@article{MZM_2005_77_6_a2,
author = {A. George and Kh. D. Ikramov},
title = {On the {Properties} of {Accretive-Dissipative} {Matrices}},
journal = {Matemati\v{c}eskie zametki},
pages = {832--843},
publisher = {mathdoc},
volume = {77},
number = {6},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a2/}
}
A. George; Kh. D. Ikramov. On the Properties of Accretive-Dissipative Matrices. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 832-843. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a2/