On the Properties of Accretive-Dissipative Matrices
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 832-843.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a complex $(n\times n)$ matrix, and let $A=B+iC$, $B=B^*$, $C=C^*$ be its Toeplitz decomposition. Then $A$ is said to be (strictly) accretive if $B>0$ and (strictly) dissipative if $C>0$. We study the properties of matrices that satisfy both these conditions, in other words, of accretive-dissipative matrices. In many respects, these matrices behave as numbers in the first quadrant of the complex plane. Some other properties are natural extensions of the corresponding properties of Hermitian positive-definite matrices.
@article{MZM_2005_77_6_a2,
     author = {A. George and Kh. D. Ikramov},
     title = {On the {Properties} of {Accretive-Dissipative} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {832--843},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a2/}
}
TY  - JOUR
AU  - A. George
AU  - Kh. D. Ikramov
TI  - On the Properties of Accretive-Dissipative Matrices
JO  - Matematičeskie zametki
PY  - 2005
SP  - 832
EP  - 843
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a2/
LA  - ru
ID  - MZM_2005_77_6_a2
ER  - 
%0 Journal Article
%A A. George
%A Kh. D. Ikramov
%T On the Properties of Accretive-Dissipative Matrices
%J Matematičeskie zametki
%D 2005
%P 832-843
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a2/
%G ru
%F MZM_2005_77_6_a2
A. George; Kh. D. Ikramov. On the Properties of Accretive-Dissipative Matrices. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 832-843. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a2/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz, Nauka, M., 1969 | MR | Zbl

[3] Arlinski\u{i} Yu. M., Popov A. B., “On sectorial matrices”, Linear Algebra Appl., 370 (2003), 133–146 | DOI | MR | Zbl

[4] Higham N. J., “Factorizing complex symmetric matrices with positive real and imaginary parts”, Math. Comp., 67 (1998), 1591–1599 | DOI | MR | Zbl

[5] Ikramov Kh. D., Kucherov A. B., “Bounding the growth factor in Gaussian elimination for Bucley's class of complex symmetric matrices”, Numer. Linear Algebra Appl., 7 (2000), 269–274 | 3.0.CO;2-8 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[6] George A., Ikramov Kh. D., Kucherov A. B., “On the growth factor in Gaussian elimination for generalized Higham matrices”, Numer. Linear Algebra Appl., 9 (2002), 107–114 | DOI | MR | Zbl

[7] Ikramov Kh. D., Chugunov V. N., “Neravenstva tipa Fishera i Adamara dlya akkretivno-dissipativnykh matrits”, Dokl. RAN, 384:5 (2002), 585–586 | MR | Zbl

[8] Mathias R., “Matrices with positive definite Hermitian part: Inequalities and linear systems”, SIAM J. Matrix Anal. Appl., 13 (1992), 640–654 | DOI | MR | Zbl

[9] Masser D. W., Neumann M., “On the square roots of strictly quasiaccretive complex matrices”, Linear Algebra Appl., 28 (1979), 135–140 | DOI | MR | Zbl

[10] Johnson C. R., Okubo K., Reams R., “Uniqueness of matrix square roots and an application”, Linear Algebra Appl., 323 (2001), 51–60 | DOI | MR | Zbl

[11] Horn R. A., Johnson C. R., Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1994

[12] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1990 | MR

[13] Bhatia R., Zhan X., “Compact operators whose real and imaginary parts are positive”, Proc. Amer. Math. Soc., 129 (2001), 2277–2281 | DOI | MR | Zbl

[14] Mirman B. A., “Khausdorfovo mnozhestvo i norma lineinogo operatora”, Voronezhsk. gos. un-t. Trudy semin. funkts. anal., 10 (1968), 51–55

[15] Bhatia R., Matrix Analysis, Springer-Verlag, Berlin, 1997 | Zbl