Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_6_a0, author = {R. K. Akhunzhanov and N. G. Moshchevitin}, title = {Density {Modulo} 1 of {Sublacunary} {Sequences}}, journal = {Matemati\v{c}eskie zametki}, pages = {803--813}, publisher = {mathdoc}, volume = {77}, number = {6}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a0/} }
R. K. Akhunzhanov; N. G. Moshchevitin. Density Modulo 1 of Sublacunary Sequences. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 803-813. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a0/
[1] Erdős P., Repartition Modulo $1$, Lecture Notes in Math., 475, Springer-Verlag, New York, 1975 | MR
[2] de Mathan D., “Numbers contravening a condition in density modulo $1$”, Acta Math. Hungar., 36 (1980), 237–241 | DOI | MR | Zbl
[3] Pollington A. D., “On the density of sequence $\{n_k\theta\}$”, Illinois J. Math., 23 (1979), 511–702 | MR
[4] Boshernitzan M., “Density modulo $1$ of dilations of sublacunary sequences”, Adv. in Math., 108 (1994), 104–117 | DOI | MR
[5] Cassels J. W. S., “Some metrical theorems in Diophantine approximaion, I”, Proc. Cambridge Philos. Soc., 46:2 (1950), 209–218 | DOI | MR
[6] Duffin R. J., Schaeffer A. C., “Khintchine's problem in metric Diophantine approximation”, Duke Math. J., 8 (1941), 243–255 | DOI | Zbl
[7] LeVeque W. J., “On the frequency of small fractional parts of real sequenses, III”, J. Reine Angew. Math., 202 (1959), 215–220 | Zbl
[8] Akhunzhanov R. K., Moschevitin N. G., “O khromaticheskom chisle distantsionnogo grafa, svyazannogo s lakunarnoi posledovatelnostyu”, Dokl. RAN, 397:3 (2004), 295–296
[9] Katznelson Y., “Chromatic numbers of Cayley graphs on $\mathbb{Z}$ and recurrence”, Combinatorica, 21:2 (2001), 211–219 | DOI | MR | Zbl
[10] Ruzsa I. Z., Tuza Zs., Voigt M., “Distance graphs with finire chromatic number”, J. Combinatorial Theory. Ser. B, 85 (2002), 181–187 | DOI | Zbl
[11] Furstenberg H., “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Systems Theory, 1 (1967), 1–49 | DOI | Zbl
[12] Boshernithan M. D., “Elementary proof of Furstenberg's Diophantine result”, Proc. Amer. Math. Soc., 122 (1994), 67–70 | DOI
[13] Hardy G. H., Littlewood J. E., “The lattice points of a right angled triangle, II”, Abh. Math. Sem. Hamburg Univ., 1 (1922), 212–249
[14] Feldman N. I., Sedmaya problema Gilberta, MGU, M., 1987
[15] Eggleston H. G., “Sets of fractional dimension which occur in some problems of number theory”, Proc. London Math. Soc., 54 (1951–52), 42–93 | DOI | Zbl
[16] Akhunzhanov R. K., “O postroenii chisel s zadannymi diofantovymi svoistvami”, Chebyshevskii sb., 5:2 (10) (2004), 19–29