Density Modulo 1 of Sublacunary Sequences
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 803-813

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of real numbers badly approximated by rational fractions whose denominators form a sublacunar sequence. For example, for the ascending sequence $s_n$, $n=1,2,3,\dots$, generated by the ordered numbers of the form $2^i3^j$, $i,j=1,2,3,\dots$, we prove that the set of real numbers $\alpha$, such that $\inf_{n\in\mathbb N}n\|s_n\alpha\|>0$, is a set of Hausdorff dimension 1. The divergence of the series $\sum_{n=1}^\infty\frac1n$ implies that the Lebesgue measure of those numbers is zero.
@article{MZM_2005_77_6_a0,
     author = {R. K. Akhunzhanov and N. G. Moshchevitin},
     title = {Density {Modulo} 1 of {Sublacunary} {Sequences}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--813},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a0/}
}
TY  - JOUR
AU  - R. K. Akhunzhanov
AU  - N. G. Moshchevitin
TI  - Density Modulo 1 of Sublacunary Sequences
JO  - Matematičeskie zametki
PY  - 2005
SP  - 803
EP  - 813
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a0/
LA  - ru
ID  - MZM_2005_77_6_a0
ER  - 
%0 Journal Article
%A R. K. Akhunzhanov
%A N. G. Moshchevitin
%T Density Modulo 1 of Sublacunary Sequences
%J Matematičeskie zametki
%D 2005
%P 803-813
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a0/
%G ru
%F MZM_2005_77_6_a0
R. K. Akhunzhanov; N. G. Moshchevitin. Density Modulo 1 of Sublacunary Sequences. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 803-813. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a0/