Density Modulo 1 of Sublacunary Sequences
Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 803-813.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of real numbers badly approximated by rational fractions whose denominators form a sublacunar sequence. For example, for the ascending sequence $s_n$, $n=1,2,3,\dots$, generated by the ordered numbers of the form $2^i3^j$, $i,j=1,2,3,\dots$, we prove that the set of real numbers $\alpha$, such that $\inf_{n\in\mathbb N}n\|s_n\alpha\|>0$, is a set of Hausdorff dimension 1. The divergence of the series $\sum_{n=1}^\infty\frac1n$ implies that the Lebesgue measure of those numbers is zero.
@article{MZM_2005_77_6_a0,
     author = {R. K. Akhunzhanov and N. G. Moshchevitin},
     title = {Density {Modulo} 1 of {Sublacunary} {Sequences}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--813},
     publisher = {mathdoc},
     volume = {77},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a0/}
}
TY  - JOUR
AU  - R. K. Akhunzhanov
AU  - N. G. Moshchevitin
TI  - Density Modulo 1 of Sublacunary Sequences
JO  - Matematičeskie zametki
PY  - 2005
SP  - 803
EP  - 813
VL  - 77
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a0/
LA  - ru
ID  - MZM_2005_77_6_a0
ER  - 
%0 Journal Article
%A R. K. Akhunzhanov
%A N. G. Moshchevitin
%T Density Modulo 1 of Sublacunary Sequences
%J Matematičeskie zametki
%D 2005
%P 803-813
%V 77
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a0/
%G ru
%F MZM_2005_77_6_a0
R. K. Akhunzhanov; N. G. Moshchevitin. Density Modulo 1 of Sublacunary Sequences. Matematičeskie zametki, Tome 77 (2005) no. 6, pp. 803-813. http://geodesic.mathdoc.fr/item/MZM_2005_77_6_a0/

[1] Erdős P., Repartition Modulo $1$, Lecture Notes in Math., 475, Springer-Verlag, New York, 1975 | MR

[2] de Mathan D., “Numbers contravening a condition in density modulo $1$”, Acta Math. Hungar., 36 (1980), 237–241 | DOI | MR | Zbl

[3] Pollington A. D., “On the density of sequence $\{n_k\theta\}$”, Illinois J. Math., 23 (1979), 511–702 | MR

[4] Boshernitzan M., “Density modulo $1$ of dilations of sublacunary sequences”, Adv. in Math., 108 (1994), 104–117 | DOI | MR

[5] Cassels J. W. S., “Some metrical theorems in Diophantine approximaion, I”, Proc. Cambridge Philos. Soc., 46:2 (1950), 209–218 | DOI | MR

[6] Duffin R. J., Schaeffer A. C., “Khintchine's problem in metric Diophantine approximation”, Duke Math. J., 8 (1941), 243–255 | DOI | Zbl

[7] LeVeque W. J., “On the frequency of small fractional parts of real sequenses, III”, J. Reine Angew. Math., 202 (1959), 215–220 | Zbl

[8] Akhunzhanov R. K., Moschevitin N. G., “O khromaticheskom chisle distantsionnogo grafa, svyazannogo s lakunarnoi posledovatelnostyu”, Dokl. RAN, 397:3 (2004), 295–296

[9] Katznelson Y., “Chromatic numbers of Cayley graphs on $\mathbb{Z}$ and recurrence”, Combinatorica, 21:2 (2001), 211–219 | DOI | MR | Zbl

[10] Ruzsa I. Z., Tuza Zs., Voigt M., “Distance graphs with finire chromatic number”, J. Combinatorial Theory. Ser. B, 85 (2002), 181–187 | DOI | Zbl

[11] Furstenberg H., “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Systems Theory, 1 (1967), 1–49 | DOI | Zbl

[12] Boshernithan M. D., “Elementary proof of Furstenberg's Diophantine result”, Proc. Amer. Math. Soc., 122 (1994), 67–70 | DOI

[13] Hardy G. H., Littlewood J. E., “The lattice points of a right angled triangle, II”, Abh. Math. Sem. Hamburg Univ., 1 (1922), 212–249

[14] Feldman N. I., Sedmaya problema Gilberta, MGU, M., 1987

[15] Eggleston H. G., “Sets of fractional dimension which occur in some problems of number theory”, Proc. London Math. Soc., 54 (1951–52), 42–93 | DOI | Zbl

[16] Akhunzhanov R. K., “O postroenii chisel s zadannymi diofantovymi svoistvami”, Chebyshevskii sb., 5:2 (10) (2004), 19–29