@article{MZM_2005_77_5_a9,
author = {V. A. Poberezhnyi},
title = {Special {Monodromy} {Groups} and the {Riemann{\textendash}Hilbert} {Problem} for the {Riemann} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {753--767},
year = {2005},
volume = {77},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a9/}
}
V. A. Poberezhnyi. Special Monodromy Groups and the Riemann–Hilbert Problem for the Riemann Equation. Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 753-767. http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a9/
[1] Iwasaki K., Kimura H., Shimomura Sh., Yoshida M., From Gauss to Painlevé. A Modern Theory of Special Functions, Aspects of Math., E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | MR
[2] Kimura T., Shima K., “A note on the monodromy of the hypergeometric differential equation”, Japan J. Math., 17 (1991), 137–163 | MR | Zbl
[3] Bolibrukh A. A., “O dostatochnykh usloviyakh polozhitelnoi razreshimosti problemy Rimana–Gilberta”, Matem. zametki, 51:2 (1992), 9–19 | MR | Zbl
[4] Zograf P. G., Takhtadzhyan L. A., “Ob uravnenii Liuvillya, aktsessornykh parametrakh i geometrii prostranstva Teikhmyullera dlya rimanovykh poverkhnostei roda $0$”, Matem. sb., 132 (174):2 (1987), 147–166 | MR | Zbl
[5] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR
[6] Bolibrukh A. A., 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. MIAN, 206, Nauka, M., 1994 | MR | Zbl
[7] Levelt A. H. M., “Hypergeometric functions”, Indag. Math., 23 (1961), 361–403 | MR
[8] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhteoretizdat, M., 1950
[9] Krylov B. L., “Reshenie v konechnom vide problemy Rimana dlya sistemy Gaussa”, Tr. Kazan. aviats. in-ta, no. 31, 1956
[10] Dekkers W., “The matrix of a connection having regular singularities on a vector bundle of rank 2 on $P^1(C)$”, Lecture Notes in Math., 712, Springer, Berlin, 1979, 33–43 | MR