Special Monodromy Groups and the Riemann--Hilbert Problem for the Riemann Equation
Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 753-767.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we solve the Riemann–Hilbert problem for the Riemann equation and for the hypergeometric equation. We describe all possible representations of the monodromy of the Riemann equation. We show that if the monodromy of the Riemann equation belongs to $SL(2,\mathbb C)$, then it can be realized not only by the Riemann equation, but also by the more special Riemann–Sturm–Liouville equation. For the hypergeometric equation, we construct a criterion for its monodromy group to belong to $SL(2,\mathbb Z)$.
@article{MZM_2005_77_5_a9,
     author = {V. A. Poberezhnyi},
     title = {Special {Monodromy} {Groups} and the {Riemann--Hilbert} {Problem} for the {Riemann} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {753--767},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a9/}
}
TY  - JOUR
AU  - V. A. Poberezhnyi
TI  - Special Monodromy Groups and the Riemann--Hilbert Problem for the Riemann Equation
JO  - Matematičeskie zametki
PY  - 2005
SP  - 753
EP  - 767
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a9/
LA  - ru
ID  - MZM_2005_77_5_a9
ER  - 
%0 Journal Article
%A V. A. Poberezhnyi
%T Special Monodromy Groups and the Riemann--Hilbert Problem for the Riemann Equation
%J Matematičeskie zametki
%D 2005
%P 753-767
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a9/
%G ru
%F MZM_2005_77_5_a9
V. A. Poberezhnyi. Special Monodromy Groups and the Riemann--Hilbert Problem for the Riemann Equation. Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 753-767. http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a9/

[1] Iwasaki K., Kimura H., Shimomura Sh., Yoshida M., From Gauss to Painlevé. A Modern Theory of Special Functions, Aspects of Math., E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | MR

[2] Kimura T., Shima K., “A note on the monodromy of the hypergeometric differential equation”, Japan J. Math., 17 (1991), 137–163 | MR | Zbl

[3] Bolibrukh A. A., “O dostatochnykh usloviyakh polozhitelnoi razreshimosti problemy Rimana–Gilberta”, Matem. zametki, 51:2 (1992), 9–19 | MR | Zbl

[4] Zograf P. G., Takhtadzhyan L. A., “Ob uravnenii Liuvillya, aktsessornykh parametrakh i geometrii prostranstva Teikhmyullera dlya rimanovykh poverkhnostei roda $0$”, Matem. sb., 132 (174):2 (1987), 147–166 | MR | Zbl

[5] Forster O., Rimanovy poverkhnosti, Mir, M., 1980 | MR

[6] Bolibrukh A. A., 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. MIAN, 206, Nauka, M., 1994 | MR | Zbl

[7] Levelt A. H. M., “Hypergeometric functions”, Indag. Math., 23 (1961), 361–403 | MR

[8] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhteoretizdat, M., 1950

[9] Krylov B. L., “Reshenie v konechnom vide problemy Rimana dlya sistemy Gaussa”, Tr. Kazan. aviats. in-ta, no. 31, 1956

[10] Dekkers W., “The matrix of a connection having regular singularities on a vector bundle of rank 2 on $P^1(C)$”, Lecture Notes in Math., 712, Springer, Berlin, 1979, 33–43 | MR