On the Geometry of Point-Transformation Invariant Class of Third-Order Ordinary Differential Equations
Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 719-726.

Voir la notice de l'article provenant de la source Math-Net.Ru

Applying geometric methods, we study a class of third-order ordinary differential equations closed with respect to point transformations. We associate with such an equation the pseudovector fields formed by its coefficients. The equation possesses a maximal algebra of point-transformation symmetries if five pseudovector fields vanish.
@article{MZM_2005_77_5_a5,
     author = {V. V. Kartak},
     title = {On the {Geometry} of {Point-Transformation} {Invariant} {Class} of {Third-Order} {Ordinary} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {719--726},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a5/}
}
TY  - JOUR
AU  - V. V. Kartak
TI  - On the Geometry of Point-Transformation Invariant Class of Third-Order Ordinary Differential Equations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 719
EP  - 726
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a5/
LA  - ru
ID  - MZM_2005_77_5_a5
ER  - 
%0 Journal Article
%A V. V. Kartak
%T On the Geometry of Point-Transformation Invariant Class of Third-Order Ordinary Differential Equations
%J Matematičeskie zametki
%D 2005
%P 719-726
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a5/
%G ru
%F MZM_2005_77_5_a5
V. V. Kartak. On the Geometry of Point-Transformation Invariant Class of Third-Order Ordinary Differential Equations. Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 719-726. http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a5/

[1] Ibragimov N. Kh., Elementary Lie Group Analisis and Ordinary Differential Equations, Wiley Series in Mathematical Methods in Practice, 4, John Wiley Sons, England, 1999 | MR

[2] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[3] Bocharov A. V., Verbovetskii A. M., Vinogradov A. M. i dr., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1997

[4] Dmitrieva V. V., Sharipov R. A., On the point transformations for the second order differential equations, , 1997 E-print solv-int/9703003

[5] Sharipov R. A., On the point transformations for the equation $y''=P+3Qy'+3Ry^{\prime2}+Sy^{\prime3}$, , 1997 E-print solv-int/9706003

[6] Sharipov R. A., Effective procedure of point classification for the equations $y''=P+3Qy'+\allowmathbreak3Ry^{\prime2}+Sy^{\prime3}$, {http://arxiv.org/abs/math.DG/9802027}{E-print math.DG/9802027}, 1998

[7] Mikhailov O. N., Sharipov R. A., “O geometrii tochechnykh rasshirenii odnogo klassa differentsialnykh uravnenii vtorogo poryadka”, Differents. uravneniya, 36:10 (2000), 1331–1335; | MR

[8] Grebot G., “The characterization of third order ordinary differential equations admitting a transitive fiber-preserving point symmetry group”, J. Math. Anal. Appl., 206 (1997), 364–388 | DOI | Zbl

[9] Yumaguzhin V. A., “Classification of 3rd order linear ODE up to equivalence”, Differential Geom. Appl., 6 (1996), 343–350 | DOI | MR | Zbl

[10] Dmitrieva V. V., “Tochechno-invariantnye klassy ODU tretego poryadka”, Matem. zametki, 70:2 (2001), 195–200 | Zbl

[11] Cosgrove C. M., Chazy classes IX–XII of third order differential equations, Research Report #98-23 (24 June), 1998