Generalized Solutions of Nonlocal Elliptic Problems
Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 665-682.

Voir la notice de l'article provenant de la source Math-Net.Ru

An elliptic equation of order $2m$ with general nonlocal boundary-value conditions, in a plane bounded domain $G$ with piecewise smooth boundary, is considered. Generalized solutions belonging to the Sobolev space $W_2^m(G)$ are studied. The Fredholm property of the unbounded operator (corresponding to the elliptic equation) acting on $L_2(G)$, and defined for functions from the space $W_2^m(G)$ that satisfy homogeneous nonlocal conditions, is established.
@article{MZM_2005_77_5_a2,
     author = {P. L. Gurevich},
     title = {Generalized {Solutions} of {Nonlocal} {Elliptic} {Problems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {665--682},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a2/}
}
TY  - JOUR
AU  - P. L. Gurevich
TI  - Generalized Solutions of Nonlocal Elliptic Problems
JO  - Matematičeskie zametki
PY  - 2005
SP  - 665
EP  - 682
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a2/
LA  - ru
ID  - MZM_2005_77_5_a2
ER  - 
%0 Journal Article
%A P. L. Gurevich
%T Generalized Solutions of Nonlocal Elliptic Problems
%J Matematičeskie zametki
%D 2005
%P 665-682
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a2/
%G ru
%F MZM_2005_77_5_a2
P. L. Gurevich. Generalized Solutions of Nonlocal Elliptic Problems. Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 665-682. http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a2/

[1] Sommerfeld A., “Ein Beitrag zur hydrodinamischen Erklärung der turbulenten Flussigkeitsbewegungen”, Proc. Intern. Congr. Math., V. 3 (Rome, 1908), Reale Accad. Lincei, Roma, 1909, 116–124

[2] Tamarkin Ya. D., O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii, Petrograd, 1917

[3] Picone M., “Equazione integrale traducente il più generale problema lineare per le equazioni differenziali lineari ordinarie di qualsivoglia ordine”, Acad. Nazionale Lincei. Atti dei Convegni, 15 (1932), 942–948 | Zbl

[4] Carleman T., “Sur la théorie des equations integrales et ses applications”, Verhandlungen des Internat. Math. Kongress, V. 1, Zürich, 1932, 132–151

[5] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | Zbl

[6] Vishik M. I., “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Tr. MMO, 1, URSS, M., 1952, 187–246

[7] Browder F. , “Non-local elliptic boundary value problems”, Amer. J. Math., 86 (1964), 735–750 | DOI | Zbl

[8] Zhitarashu N. V., Eidelman S. D., “O nelokalnykh granichnykh zadachakh dlya ellipticheskikh uravnenii”, Matem. issled., 6:2 (20) (1971), 63–73 | Zbl

[9] Roitberg Ya. A., Sheftel Z. G., “Nelokalnye zadachi dlya ellipticheskikh uravnenii i sistem”, Sib. matem. zh., 13:1 (1972), 165–181 | Zbl

[10] Kishkis K. Yu., “Ob indekse zadachi Bitsadze–Samarskogo dlya garmonicheskikh funktsii”, Differents. uravneniya, 24:1 (1988), 105–110 | Zbl

[11] Guschin A. K., Mikhailov V. P., “O razreshimosti nelokalnykh zadach dlya ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 185:1 (1994), 121–160

[12] Guschin A. K., “Uslovie kompaktnosti odnogo klassa operatorov i ego primenenie k issledovaniyu razreshimosti nelokalnykh zadach dlya ellipticheskikh uravnenii”, Matem. sb., 193:5 (2002), 17–36 | Zbl

[13] Skubachevskii A. L., “Ellipticheskie zadachi s nelokalnymi usloviyami vblizi granitsy”, Matem. sb., 129 (171):2 (1986), 279–302

[14] Skubachevskii A. L., “Regularity of solutions for some nonlocal elliptic problem”, Russian J. Math. Phys., 8 (2001), 365–374 | Zbl

[15] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, URSS, M., 1967, 209–292

[16] Skubachevskii A. L., “Modelnye nelokalnye zadachi dlya ellipticheskikh uravnenii v dvugrannykh uglakh”, Differents. uravneniya, 26:1 (1990), 120–131

[17] Skubachevskii A. L., “O metode srezayuschikh funktsii v teorii nelokalnykh zadach”, Differents. uravneniya, 27:1 (1991), 128–139

[18] Skubachevskii A. L., “On the stability of index of nonlocal elliptic problems”, J. Math. Anal. Appl., 160:2 (1991), 323–341 | DOI | Zbl

[19] Skubachevskii A. L., Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel–Boston–Berlin, 1997 | Zbl

[20] Feller W., “Diffusion processes in one dimension”, Trans. Amer. Math. Soc., 77 (1954), 1–30 | DOI

[21] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differents. uravneniya, 16:11 (1980), 1925–1935 | Zbl

[22] Gurevich P. L., “Solvability of nonlocal elliptic problems in Sobolev spaces, I”, Russian J. Math. Phys., 10:4 (2003), 436–466 | Zbl

[23] Gurevich P. L., “Solvability of nonlocal elliptic problems in Sobolev spaces, II”, Russian J. Math. Phys., 11:1 (2004), 1–44 | Zbl

[24] Skubachevskii A. L., “O nekotorykh nelokalnykh ellipticheskikh kraevykh zadachakh”, Differents. uravneniya, 18:9 (1982), 1590–1599

[25] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[26] Kovaleva O. A., Skubachevskii A. L., “Razreshimost nelokalnykh ellipticheskikh zadach v prostranstvakh s vesom”, Matem. zametki, 67:6 (2000), 882–898 | Zbl

[27] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971

[28] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | Zbl

[29] Gurevich P. L., “Nelokalnye ellipticheskie zadachi s nelineinymi preobrazovaniyami peremennykh vblizi tochek sopryazheniya”, Izv. RAN. Ser. matem., 67:6 (2003), 71–110 | MR | Zbl