@article{MZM_2005_77_5_a12,
author = {T. V. Shulman},
title = {Equivalence of the $C^*${-Algebras} $q\mathbb C$ and $C_0(\mathbb R^2)$ in the {Asymptotic} {Category}},
journal = {Matemati\v{c}eskie zametki},
pages = {788--796},
year = {2005},
volume = {77},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a12/}
}
T. V. Shulman. Equivalence of the $C^*$-Algebras $q\mathbb C$ and $C_0(\mathbb R^2)$ in the Asymptotic Category. Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 788-796. http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a12/
[1] Cuntz J., “A new look at $KK$-theory”, $K$-Theory, 1:1 (1987), 31–51 | DOI | MR | Zbl
[2] Kasparov G. G., “Operatornyi $K$-funktor i rasshireniya $C^*$-algebr”, Izv. AN SSSR. Ser. matem., 44 (1980), 571–636 | MR | Zbl
[3] Connes A., Higson N., “Deformations, morphismes asymptotiques et $K$-theorie bivariante”, C. R. Acad. Sci. Paris. Sér. I Math., 311 (1990), 101–106 | MR | Zbl
[4] Loring T., “Perturbation questions in the Cuntz picture of $K$-theory”, $K$-Theory, 11 (1997), 161–193 | DOI | MR | Zbl
[5] Loring T., “Almost multiplicative maps between $C^*$-algebras”, Operator Algebras and Quantum Field Theory (Rome, 1996), Internat. Press, Cambridge, MA, 1997, 111–122 | MR | Zbl
[6] Arveson W., “Notes on extensions of $C^*$-algebras”, Duke Math. J., 44 (1977), 329–355 | DOI | Zbl
[7] Loring T., “$K$-theory and asymptotically commuting matrices”, Canad. J. Math., 15:1 (1988), 197–216 | MR
[8] Blackadar B., $K$-Theory for Operator Algebras, Math. Sci. Res. Inst. Publ., 5, Springer-Verlag, New York, 1986 | MR | Zbl