Equivalence of the $C^*$-Algebras $q\mathbb C$ and $C_0(\mathbb R^2)$ in the Asymptotic Category
Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 788-796.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of Kasparov, Connes, Higson, and Loring imply the coincidence of the functors $[[q\mathbb C\otimes K,B\otimes K]]=[[C_0(\mathbb R^2)\otimes K,B\otimes K]]$ for any $C^*$-algebra $B$; here $[[A,B]]$ denotes the set of homotopy classes of asymptotic homomorphisms from $A$ to $B$. Inthe paper, this assertion is strengthened; namely, it is shown that the algebras $q\mathbb C\otimes K$ and $C_0(\mathbb R^2)\otimes K$ are equivalent in the category whose objects are $C^*$-algebras and morphisms are classes of homotopic asymptotic homomorphisms. Some geometric properties of the obtained equivalence are studied. Namely, the algebras $q\mathbb C\otimes K$ and $C_0(\mathbb R^2)\otimes K$ are represented as fields of $C^*$-algebras; it is proved that the equivalence is not fiber-preserving, i.e., is does not take fibers to fibers. It is also proved that the algebras under consideration are not homotopy equivalent.
@article{MZM_2005_77_5_a12,
     author = {T. V. Shulman},
     title = {Equivalence of the $C^*${-Algebras} $q\mathbb C$ and $C_0(\mathbb R^2)$ in the {Asymptotic} {Category}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {788--796},
     publisher = {mathdoc},
     volume = {77},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a12/}
}
TY  - JOUR
AU  - T. V. Shulman
TI  - Equivalence of the $C^*$-Algebras $q\mathbb C$ and $C_0(\mathbb R^2)$ in the Asymptotic Category
JO  - Matematičeskie zametki
PY  - 2005
SP  - 788
EP  - 796
VL  - 77
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a12/
LA  - ru
ID  - MZM_2005_77_5_a12
ER  - 
%0 Journal Article
%A T. V. Shulman
%T Equivalence of the $C^*$-Algebras $q\mathbb C$ and $C_0(\mathbb R^2)$ in the Asymptotic Category
%J Matematičeskie zametki
%D 2005
%P 788-796
%V 77
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a12/
%G ru
%F MZM_2005_77_5_a12
T. V. Shulman. Equivalence of the $C^*$-Algebras $q\mathbb C$ and $C_0(\mathbb R^2)$ in the Asymptotic Category. Matematičeskie zametki, Tome 77 (2005) no. 5, pp. 788-796. http://geodesic.mathdoc.fr/item/MZM_2005_77_5_a12/

[1] Cuntz J., “A new look at $KK$-theory”, $K$-Theory, 1:1 (1987), 31–51 | DOI | MR | Zbl

[2] Kasparov G. G., “Operatornyi $K$-funktor i rasshireniya $C^*$-algebr”, Izv. AN SSSR. Ser. matem., 44 (1980), 571–636 | MR | Zbl

[3] Connes A., Higson N., “Deformations, morphismes asymptotiques et $K$-theorie bivariante”, C. R. Acad. Sci. Paris. Sér. I Math., 311 (1990), 101–106 | MR | Zbl

[4] Loring T., “Perturbation questions in the Cuntz picture of $K$-theory”, $K$-Theory, 11 (1997), 161–193 | DOI | MR | Zbl

[5] Loring T., “Almost multiplicative maps between $C^*$-algebras”, Operator Algebras and Quantum Field Theory (Rome, 1996), Internat. Press, Cambridge, MA, 1997, 111–122 | MR | Zbl

[6] Arveson W., “Notes on extensions of $C^*$-algebras”, Duke Math. J., 44 (1977), 329–355 | DOI | Zbl

[7] Loring T., “$K$-theory and asymptotically commuting matrices”, Canad. J. Math., 15:1 (1988), 197–216 | MR

[8] Blackadar B., $K$-Theory for Operator Algebras, Math. Sci. Res. Inst. Publ., 5, Springer-Verlag, New York, 1986 | MR | Zbl