Klein polyhedra for three extremal cubic forms
Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 566-583.

Voir la notice de l'article provenant de la source Math-Net.Ru

Davenport and Swinnerton-Dyer found the first 19 extremal ternary cubic forms $g_i$, which have the same meaning as the well-known Markov forms in the binary quadratic case. Bryuno and Parusnikov recently computed the Klein polyhedra for the forms $g_1-g_4$. They also computed the “convergents” for various matrix generalizations of the continued fractions algorithm for multiple root vectors and studied their position with respect to the Klein polyhedra. In the present paper, we compute the Klein polyhedra for the forms $g_5-g_7$ and the adjoint form $g^*_7$. Their periods and fundamental domains are found and the expansions of the multiple root vectors of these forms by means of the matrix algorithms due to Euler, Jacobi, Poincaré, Brun, Parusnikov, and Bryuno, are computed. The position of the “convergents of the continued fractions” with respect to the Klein polyhedron is used as a measure of quality of the algorithms. Eulers and Poincarés algorithms proved to be the worst ones from this point of view, and the Bryuno one is the best. However, none of the algorithms generalizes all the properties of continued fractions.
@article{MZM_2005_77_4_a9,
     author = {V. I. Parusnikov},
     title = {Klein polyhedra for three extremal cubic forms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {566--583},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a9/}
}
TY  - JOUR
AU  - V. I. Parusnikov
TI  - Klein polyhedra for three extremal cubic forms
JO  - Matematičeskie zametki
PY  - 2005
SP  - 566
EP  - 583
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a9/
LA  - ru
ID  - MZM_2005_77_4_a9
ER  - 
%0 Journal Article
%A V. I. Parusnikov
%T Klein polyhedra for three extremal cubic forms
%J Matematičeskie zametki
%D 2005
%P 566-583
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a9/
%G ru
%F MZM_2005_77_4_a9
V. I. Parusnikov. Klein polyhedra for three extremal cubic forms. Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 566-583. http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a9/

[1] Khinchin A. Ya., Tsepnye drobi, Fizmatgiz, M., 1961

[2] Klein F., “Ueber eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1895, no. 3, 357–359

[3] Klein F., “Sur une representation géometrique du developpement en fraction continue ordinaire”, Nouv. Ann. Math. (3), 15 (1896), 321–331

[4] Klein F., Ausgewählte Kapitel der Zahlentheorie. Bd. I. Einleitung, Vorlesung 1895/1896 herausgegeben von A. Sommerfeld, Göttingen, 1896

[5] Koksma J. F., Diophantische Approximationen, Springer, Berlin, 1936 | MR

[6] Davenport H., “On the product of three homogeneous linear forms, I”, Proc. London Math. Soc. (2), 44 (1938), 412–431 | DOI | MR

[7] Davenport H., “Note on the product of three homogeneous linear forms”, J. London Math. Soc., 16 (1941), 98–101 | DOI | Zbl

[8] Davenport H., “On the product of three homogeneous linear forms, IV”, Proc. Cambridge Philos. Soc., 39 (1943), 1–21 | DOI | MR | Zbl

[9] Swinnerton-Dyer H. P. F., “On the product of three homogeneous linear forms”, Acta Arith., 18 (1971), 371–385 | Zbl

[10] Bryuno A. D., Parusnikov V. I., “Mnogogranniki Kleina dlya dvukh kubicheskikh form Davenporta”, Matem. zametki, 56:4 (1994), 9–27 | MR | Zbl

[11] Bryuno A. D., Parusnikov V. I., “Sravnenie raznykh obobschenii tsepnykh drobei”, Matem. zametki, 61:3 (1997), 339–348 | Zbl

[12] Parusnikov V. I., “Klein polyhedra for complete decomposable forms”, Number Theory, eds. K. Győry, A. Pethő, V. T. Sós, de Gruyter, Berlin–New York, 1998, 453–463 | MR | Zbl

[13] Parusnikov V. I., “Mnogogranniki Kleina dlya chetvertoi ekstremalnoi kubicheskoi formy”, Matem. zametki, 67:1 (2000), 110–128 | Zbl

[14] Parusnikov V. I., Mnogogranniki Kleina dlya pyatoi ekstremalnoi kubicheskoi formy, Preprint IPM im. M. V. Keldysha RAN No 69, M., 1998

[15] Parusnikov V. I., Mnogogranniki Kleina dlya shestoi ekstremalnoi kubicheskoi formy, Preprint IPM im. M. V. Keldysha RAN No 69, M., 1999 | Zbl

[16] Parusnikov V. I., Mnogogranniki Kleina dlya sedmoi ekstremalnoi kubicheskoi formy, Preprint IPM im. M. V. Keldysha RAN No 79, M., 1999 | Zbl

[17] Charve L., “De la reduction des formes ternaires positives et de leur application aux irrationelles du troisieme degre”, Ann. Sci. Ecole Norm. Sup. Ser. 2. Supplement, 9 (1880), 1–156

[18] Korkina E. I., “Dvumernye tsepnye drobi. Samye prostye primery”, Osobennosti gladkikh otobrazhenii s dopolnitelnymi strukturami, Tr. MIAN, 209, ed. V. I. Arnold, Fizmatlit, M., 1995, 143–166

[19] Goldman A., Takker A., “Mnogogrannye vypuklye konusy”, Lineinye neravenstva, IL, M., 1959, 142–161

[20] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[21] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1972