Conservation laws and B\"acklund transformations associated with the Born--Infeld equation
Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 551-565.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Born–Infeld equation in the hyperbolic domain of its solutions, we obtain first-order conservation laws depending on two arbitrary functions. It is shown that each conservation law is related to some Bäcklund transformation that transforms the Born–Infeld equation into some related equation.
@article{MZM_2005_77_4_a8,
     author = {O. F. Men'shikh},
     title = {Conservation laws and {B\"acklund} transformations associated with the {Born--Infeld} equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {551--565},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a8/}
}
TY  - JOUR
AU  - O. F. Men'shikh
TI  - Conservation laws and B\"acklund transformations associated with the Born--Infeld equation
JO  - Matematičeskie zametki
PY  - 2005
SP  - 551
EP  - 565
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a8/
LA  - ru
ID  - MZM_2005_77_4_a8
ER  - 
%0 Journal Article
%A O. F. Men'shikh
%T Conservation laws and B\"acklund transformations associated with the Born--Infeld equation
%J Matematičeskie zametki
%D 2005
%P 551-565
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a8/
%G ru
%F MZM_2005_77_4_a8
O. F. Men'shikh. Conservation laws and B\"acklund transformations associated with the Born--Infeld equation. Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 551-565. http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a8/

[1] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1987 | MR

[2] Olver P., Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[3] Barbashov B. M., Chernikov N. A., “Reshenie i kvantovanie nelineinoi dvukhmernoi modeli tipa Borna–Infelda”, Zhurn. eksperim. i teoret. fiziki, 50:3 (1966), 1296–1308 | MR

[4] Born M., Infeld L., “Foundations of the new field theory”, Proc. Roy. Soc. London Ser. A, 144 (1934), 425–451 | DOI | Zbl

[5] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[6] Menshikh O. F., “O vzaimodeistvii finitnykh uedinennykh voln dlya uravnenii tipa Borna–Infelda”, TMF, 79:1 (1989), 16–29 | MR

[7] Menshikh O. F., “O tochnykh resheniyakh uravneniya Borna–Infelda”, Differents. uravneniya, 22:8 (1986), 1410–1416 | MR

[8] Yanenko N. N., “O razryvakh v resheniyakh kvazilineinykh uravnenii”, UMN, 10:2 (1955), 195–202 | MR | Zbl

[9] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | Zbl

[10] Menshikh O. F., Timoshin M. I., Gruppovaya klassifikatsiya uravneniya Borna–Infelda s tremya nezavisimymi peremennymi i nekotorye ego chastnye resheniya, Dep. VINITI 09.09.1998 No. 2747-V98, Samara, 1998

[11] Fuschich V. I., Serov N. I., “O tochnykh resheniyakh uravneniya Borna–Infelda”, Dokl. AN SSSR, 263:3 (1982), 582–586

[12] Gelfand I. M., Fomin S. V., Variatsionnoe ischislenie, GIFML, M., 1961

[13] Lavrentev M. A., Shabat B. V., Problemy gidrodinamiki i ikh matematicheskikh modelei, Nauka, M., 1977

[14] Menshikh O. F., “Ob odnom obobschenii formul Veiershtrassa v teorii minimalnykh poverkhnostei”, Arifmetika i geometriya mnogoobrazii, Mezhvuzovskii sbornik nauchnykh statei, Samarskii gosudarstvennyi universitet, Samara, 1992, 93–100

[15] Menshikh O. F., Ob odnom obobschenii uravnenii minimalnykh poverkhnostei, Dep. VINITI 18.03.1987 No. 1947-V87, Kuibyshev, 1987

[16] Dao Chong Tkhi, Fomenko A. G., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | Zbl