Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_4_a8, author = {O. F. Men'shikh}, title = {Conservation laws and {B\"acklund} transformations associated with the {Born--Infeld} equation}, journal = {Matemati\v{c}eskie zametki}, pages = {551--565}, publisher = {mathdoc}, volume = {77}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a8/} }
TY - JOUR AU - O. F. Men'shikh TI - Conservation laws and B\"acklund transformations associated with the Born--Infeld equation JO - Matematičeskie zametki PY - 2005 SP - 551 EP - 565 VL - 77 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a8/ LA - ru ID - MZM_2005_77_4_a8 ER -
O. F. Men'shikh. Conservation laws and B\"acklund transformations associated with the Born--Infeld equation. Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 551-565. http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a8/
[1] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1987 | MR
[2] Olver P., Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl
[3] Barbashov B. M., Chernikov N. A., “Reshenie i kvantovanie nelineinoi dvukhmernoi modeli tipa Borna–Infelda”, Zhurn. eksperim. i teoret. fiziki, 50:3 (1966), 1296–1308 | MR
[4] Born M., Infeld L., “Foundations of the new field theory”, Proc. Roy. Soc. London Ser. A, 144 (1934), 425–451 | DOI | Zbl
[5] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977
[6] Menshikh O. F., “O vzaimodeistvii finitnykh uedinennykh voln dlya uravnenii tipa Borna–Infelda”, TMF, 79:1 (1989), 16–29 | MR
[7] Menshikh O. F., “O tochnykh resheniyakh uravneniya Borna–Infelda”, Differents. uravneniya, 22:8 (1986), 1410–1416 | MR
[8] Yanenko N. N., “O razryvakh v resheniyakh kvazilineinykh uravnenii”, UMN, 10:2 (1955), 195–202 | MR | Zbl
[9] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | Zbl
[10] Menshikh O. F., Timoshin M. I., Gruppovaya klassifikatsiya uravneniya Borna–Infelda s tremya nezavisimymi peremennymi i nekotorye ego chastnye resheniya, Dep. VINITI 09.09.1998 No. 2747-V98, Samara, 1998
[11] Fuschich V. I., Serov N. I., “O tochnykh resheniyakh uravneniya Borna–Infelda”, Dokl. AN SSSR, 263:3 (1982), 582–586
[12] Gelfand I. M., Fomin S. V., Variatsionnoe ischislenie, GIFML, M., 1961
[13] Lavrentev M. A., Shabat B. V., Problemy gidrodinamiki i ikh matematicheskikh modelei, Nauka, M., 1977
[14] Menshikh O. F., “Ob odnom obobschenii formul Veiershtrassa v teorii minimalnykh poverkhnostei”, Arifmetika i geometriya mnogoobrazii, Mezhvuzovskii sbornik nauchnykh statei, Samarskii gosudarstvennyi universitet, Samara, 1992, 93–100
[15] Menshikh O. F., Ob odnom obobschenii uravnenii minimalnykh poverkhnostei, Dep. VINITI 18.03.1987 No. 1947-V87, Kuibyshev, 1987
[16] Dao Chong Tkhi, Fomenko A. G., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | Zbl