Existence of $K$-limits of holomorphic maps
Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 509-514

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a complete hyperbolic domain in $\mathbb C^n$, $n>1$, and $N$ a compact Hermitian manifold. We prove a criterion for the existence of the $K$-limit of an arbitrary holomorphic map $f\colon D\to N$ at an arbitrary boundary point $D$ under the condition that $f$ has the corresponding radial limit at this point.
@article{MZM_2005_77_4_a2,
     author = {P. V. Dovbush},
     title = {Existence of $K$-limits of holomorphic maps},
     journal = {Matemati\v{c}eskie zametki},
     pages = {509--514},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a2/}
}
TY  - JOUR
AU  - P. V. Dovbush
TI  - Existence of $K$-limits of holomorphic maps
JO  - Matematičeskie zametki
PY  - 2005
SP  - 509
EP  - 514
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a2/
LA  - ru
ID  - MZM_2005_77_4_a2
ER  - 
%0 Journal Article
%A P. V. Dovbush
%T Existence of $K$-limits of holomorphic maps
%J Matematičeskie zametki
%D 2005
%P 509-514
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a2/
%G ru
%F MZM_2005_77_4_a2
P. V. Dovbush. Existence of $K$-limits of holomorphic maps. Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 509-514. http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a2/