Removable singularities of weak solutions to linear partial differential equations
Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 584-591.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $P(x,D)$ is a linear differential operator of order $m>0$ with smooth coefficients whose derivatives up to order $m$ are continuous functions in the domain $G\subset\mathbb R^n$ $(n\geqslant1)$, $1$, $s>0$ and $q=p/(p-1)$. In this paper, we show that if $n,m,p$ and $s$ satisfy the two-sided bound $0\leqslant n-q(m-s)$, then for a weak solution of the equation $P(x,D)u=0$ from the Sharpley–DeVore class $C_p^s(G)_{\text{loc}}$, any closed set in $G$ is removable if its Hausdorff measure of order $n-q(m-s)$ is finite. This result strengthens the well-known result of Harvey and Polking on removable singularities of weak solutions to the equation $P(x,D)u=0$ from the Sobolev classes and extends it to the case of noninteger orders of smoothness.
@article{MZM_2005_77_4_a10,
     author = {A. V. Pokrovskii},
     title = {Removable singularities of weak solutions to linear partial differential equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {584--591},
     publisher = {mathdoc},
     volume = {77},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a10/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - Removable singularities of weak solutions to linear partial differential equations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 584
EP  - 591
VL  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a10/
LA  - ru
ID  - MZM_2005_77_4_a10
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T Removable singularities of weak solutions to linear partial differential equations
%J Matematičeskie zametki
%D 2005
%P 584-591
%V 77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a10/
%G ru
%F MZM_2005_77_4_a10
A. V. Pokrovskii. Removable singularities of weak solutions to linear partial differential equations. Matematičeskie zametki, Tome 77 (2005) no. 4, pp. 584-591. http://geodesic.mathdoc.fr/item/MZM_2005_77_4_a10/

[1] Harvey R., Polking J. C., “Removable singularities of solutions of linear partial differntial equations”, Acta Math., 125:1/2 (1970), 39–56 | DOI | MR | Zbl

[2] Tarkhanov N. N., Ryad Lorana dlya reshenii ellipticheskikh sistem, Nauka, Novosibirsk, 1991 | MR | Zbl

[3] Sharpley R., DeVore R., “Maximal functions measuring smoothness”, Mem. Amer. Math. Soc., 47, no. 293, 1984, 1–113 | MR

[4] Bojarski B., “Sharp maximal operator of fractional order and Sobolev imbedding inequalities”, Bull. Polish Acad. Sci. Math., 33:1–2 (1985), 7–16 | MR | Zbl

[5] Pokrovskii A. V., “Removable singularities for solutions to elliptic equations in Sharpley–DeVore classes”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, Tezisy dokladov vtoroi Mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu chlena-korr. RAN professora L. D. Kudryavtseva, Fizmatlit, M., 2003, 87

[6] Zalcman L., “Mean values and differential equations”, Israel Math. J., 14 (1973), 339–352 | DOI | MR | Zbl

[7] Pokrovskii A. V., “Teoremy o srednem dlya reshenii lineinykh differentsialnykh uravnenii s chastnymi proizvodnymi”, Matem. zametki, 64:2 (1998), 260–272 | MR

[8] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[9] Kalderón A. P., “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 167–186 | MR

[10] Pokrovskii A. V., “Ob ustranimykh osobennostyakh reshenii odnorodnykh ellipticheskikh uravnenii v klassakh Nikolskogo–Besova”, Dokl. RAN, 380:2 (2001), 168–171 | Zbl

[11] Verdera J., “$C^m$-approximations by solutions of elliptic equations and Calderon–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187 | DOI | MR | Zbl