Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_3_a9, author = {V. A. Sadovnichii and Z. Yu. Fazullin}, title = {Asymptotics of the eigenvalues and the formula for the trace of perturbations of the {Laplace} operator on the sphere~$\mathbb S^2$}, journal = {Matemati\v{c}eskie zametki}, pages = {434--448}, publisher = {mathdoc}, volume = {77}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a9/} }
TY - JOUR AU - V. A. Sadovnichii AU - Z. Yu. Fazullin TI - Asymptotics of the eigenvalues and the formula for the trace of perturbations of the Laplace operator on the sphere~$\mathbb S^2$ JO - Matematičeskie zametki PY - 2005 SP - 434 EP - 448 VL - 77 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a9/ LA - ru ID - MZM_2005_77_3_a9 ER -
%0 Journal Article %A V. A. Sadovnichii %A Z. Yu. Fazullin %T Asymptotics of the eigenvalues and the formula for the trace of perturbations of the Laplace operator on the sphere~$\mathbb S^2$ %J Matematičeskie zametki %D 2005 %P 434-448 %V 77 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a9/ %G ru %F MZM_2005_77_3_a9
V. A. Sadovnichii; Z. Yu. Fazullin. Asymptotics of the eigenvalues and the formula for the trace of perturbations of the Laplace operator on the sphere~$\mathbb S^2$. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 434-448. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a9/
[1] Guillemin B., “Some spectral results for the Laplace operator with potential on the $n$-sphere”, Adv. in Math., 27 (1978), 273–286 | DOI | MR | Zbl
[2] Widom H., “The Laplace operator with potential on the $2$-sphere”, Adv. in Math., 31 (1979), 63–66 | DOI | Zbl
[3] Sadovnichii V. A., Dubrovskii V. V., “Klassicheskaya formula regulyarizovannogo sleda dlya sobstvennykh chisel operatora Laplasa–Beltrami s potentsialom na sfere”, Dokl. AN SSSR, 319:1 (1991), 61–62
[4] Podolskii V. E., “Formula regulyarizovannogo sleda operatora Laplasa–Beltrami s nechetnym potentsialom na sfere $\SS^2$”, Matem.zametki, 56:1 (1994), 71–77
[5] Fazullin Z. Yu., “Regulyarizovannyi sled operatora Laplasa–Beltrami”, Mezhdunarodnaya konferentsiya po kompleksnomu analizu i smezhnym voprosam, Tezisy dokl., Nizhnii Novgorod, 1997, 80–81
[6] Bobrov A. N., “Sled operatora Laplasa–Beltrami s potentsialom na poverkhnosti Tsollya”, Dokl. RAN, 368:2 (1999), 154–156 | Zbl
[7] Sadovnichii V. A., Fazullin Z. Yu., “Formula pervogo regulyarizovannogo sleda dlya vozmuscheniya operatora Laplasa–Beltrami”, Differents. uravneniya, 37:3 (2001), 402–409
[8] Sadovnichii V. A., Dubrovskii V. V., Poretskov O. A., “Formula pervogo regulyarizovannogo sleda operatora Laplasa–Beltrami s negladkim potentsialom na dvumernoi sfere”, Dokl. RAN, 382:1 (2002), 11–14 | Zbl
[9] Sadovnichii V. A., Fazullin Z. Yu., “Klasternaya asimptotika sobstvennykh chisel vozmuscheniya operatora Laplasa na sfere $\SS^2$”, Dokl. RAN, 391:4 (2003), 456–459
[10] Gobson E. V., Teoriya sfericheskikh i ellipsoidalnykh funktsii, IL, M., 1952
[11] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962
[12] Olver F., Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | Zbl