Removable singularities of solutions of second-order divergence-form elliptic equations
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 424-433

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a uniformly elliptic linear second-order differential operator in divergence form with bounded measurable coefficients in a bounded domain $G\subset\mathbb R^n$ $(n\geqslant2)$. In this paper, we introduce subclasses of the Sobolev class $W^{1,2}(G)_{\text{loc}}$ containing generalized solutions of the equation $Lu=0$ such that the closed sets of nonisolated removable singular points for such solutions can be described completely in terms of Hausdorff measures.
@article{MZM_2005_77_3_a8,
     author = {A. V. Pokrovskii},
     title = {Removable singularities of solutions of second-order divergence-form elliptic equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {424--433},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a8/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - Removable singularities of solutions of second-order divergence-form elliptic equations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 424
EP  - 433
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a8/
LA  - ru
ID  - MZM_2005_77_3_a8
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T Removable singularities of solutions of second-order divergence-form elliptic equations
%J Matematičeskie zametki
%D 2005
%P 424-433
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a8/
%G ru
%F MZM_2005_77_3_a8
A. V. Pokrovskii. Removable singularities of solutions of second-order divergence-form elliptic equations. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 424-433. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a8/