Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_3_a2, author = {A. P. Kolesnikov}, title = {Algebraic splines in locally convex spaces}, journal = {Matemati\v{c}eskie zametki}, pages = {339--353}, publisher = {mathdoc}, volume = {77}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a2/} }
A. P. Kolesnikov. Algebraic splines in locally convex spaces. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 339-353. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a2/
[1] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961
[2] Kolesnikov A. P., “Algebraicheskie bazisy v vektornykh prostranstvakh”, Vestn. RUDN, 97:1 (1997), 78–86
[3] Kolesnikov A. P., Funktsionalnye splainy, Izd. RUDN, M., 1993 | Zbl
[4] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969
[5] Marchuk G. I., Agoshkov V. A., Vvedenie v proektsionno setochnye metody, Nauka, M., 1981
[6] Kolesnikov A. P., Topologicheskie metody v teorii priblizhenii i chislennom analize, Izd. URSS, M., 2001
[7] Schweikert D. J., “An interpolation curve using a spline in tension”, J. Math. Phys., 45 (1966), 312–317 | Zbl