Algebraic splines in locally convex spaces
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 339-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a vector space of continuous functions, a variational solution of a finite system of linear functional equations is found. The locally convex topology on the vector space and the properties of the objective functional required for obtaining the solution in the form of a decomposition in the basis dual to the family of functionals of the system are determined. The basis elements are calculated exactly and called basis algebraic splines; their linear span is called the space of algebraic splines in the corresponding locally convex space.
@article{MZM_2005_77_3_a2,
     author = {A. P. Kolesnikov},
     title = {Algebraic splines in locally convex spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {339--353},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a2/}
}
TY  - JOUR
AU  - A. P. Kolesnikov
TI  - Algebraic splines in locally convex spaces
JO  - Matematičeskie zametki
PY  - 2005
SP  - 339
EP  - 353
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a2/
LA  - ru
ID  - MZM_2005_77_3_a2
ER  - 
%0 Journal Article
%A A. P. Kolesnikov
%T Algebraic splines in locally convex spaces
%J Matematičeskie zametki
%D 2005
%P 339-353
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a2/
%G ru
%F MZM_2005_77_3_a2
A. P. Kolesnikov. Algebraic splines in locally convex spaces. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 339-353. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a2/

[1] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961

[2] Kolesnikov A. P., “Algebraicheskie bazisy v vektornykh prostranstvakh”, Vestn. RUDN, 97:1 (1997), 78–86

[3] Kolesnikov A. P., Funktsionalnye splainy, Izd. RUDN, M., 1993 | Zbl

[4] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969

[5] Marchuk G. I., Agoshkov V. A., Vvedenie v proektsionno setochnye metody, Nauka, M., 1981

[6] Kolesnikov A. P., Topologicheskie metody v teorii priblizhenii i chislennom analize, Izd. URSS, M., 2001

[7] Schweikert D. J., “An interpolation curve using a spline in tension”, J. Math. Phys., 45 (1966), 312–317 | Zbl