Perfect subsets of invariant CA-sets
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 334-338

Voir la notice de l'article provenant de la source Math-Net.Ru

The familiar theorem that any $\Sigma^1_2(a)$-set $X$ of real numbers (where $a$ is a fixed real parameter) not containing a perfect kernel necessarily satisfies the condition $X\subseteq\mathbf L[a]$ is extended to a wider class of sets, with countable ordinals allowed as additional parameters in $\Sigma^1_2(a)$-definitions.
@article{MZM_2005_77_3_a1,
     author = {V. G. Kanovei and V. A. Lyubetskii},
     title = {Perfect subsets of invariant {CA-sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {334--338},
     publisher = {mathdoc},
     volume = {77},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a1/}
}
TY  - JOUR
AU  - V. G. Kanovei
AU  - V. A. Lyubetskii
TI  - Perfect subsets of invariant CA-sets
JO  - Matematičeskie zametki
PY  - 2005
SP  - 334
EP  - 338
VL  - 77
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a1/
LA  - ru
ID  - MZM_2005_77_3_a1
ER  - 
%0 Journal Article
%A V. G. Kanovei
%A V. A. Lyubetskii
%T Perfect subsets of invariant CA-sets
%J Matematičeskie zametki
%D 2005
%P 334-338
%V 77
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a1/
%G ru
%F MZM_2005_77_3_a1
V. G. Kanovei; V. A. Lyubetskii. Perfect subsets of invariant CA-sets. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 334-338. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a1/