Perfect subsets of invariant CA-sets
Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 334-338
Voir la notice de l'article provenant de la source Math-Net.Ru
The familiar theorem that any $\Sigma^1_2(a)$-set $X$ of real numbers (where $a$ is a fixed real parameter) not containing a perfect kernel necessarily satisfies the condition $X\subseteq\mathbf L[a]$ is extended to a wider class of sets, with countable ordinals allowed as additional parameters in $\Sigma^1_2(a)$-definitions.
@article{MZM_2005_77_3_a1,
author = {V. G. Kanovei and V. A. Lyubetskii},
title = {Perfect subsets of invariant {CA-sets}},
journal = {Matemati\v{c}eskie zametki},
pages = {334--338},
publisher = {mathdoc},
volume = {77},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a1/}
}
V. G. Kanovei; V. A. Lyubetskii. Perfect subsets of invariant CA-sets. Matematičeskie zametki, Tome 77 (2005) no. 3, pp. 334-338. http://geodesic.mathdoc.fr/item/MZM_2005_77_3_a1/