Basic intersection cohomology of conical fibrations
Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 235-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce notions of singular fibration and singular Seifert fibration. These notions naturally generalize that o locally trivial fibration to the category of stratified pseudomanifolds. For singular foliations determined by such fibrations, we prove the de Rham theorem for basic intersection cohomology recently introduced by the present authors. One of the main examples of such a structure is the natural projection to the space of fibers of a singular Riemannian foliation determined by a Lie group action on a compact smooth manifold.
@article{MZM_2005_77_2_a6,
     author = {M. Saralegi-Aranguren and R. Wolak},
     title = {Basic intersection cohomology of conical fibrations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {235--257},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a6/}
}
TY  - JOUR
AU  - M. Saralegi-Aranguren
AU  - R. Wolak
TI  - Basic intersection cohomology of conical fibrations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 235
EP  - 257
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a6/
LA  - ru
ID  - MZM_2005_77_2_a6
ER  - 
%0 Journal Article
%A M. Saralegi-Aranguren
%A R. Wolak
%T Basic intersection cohomology of conical fibrations
%J Matematičeskie zametki
%D 2005
%P 235-257
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a6/
%G ru
%F MZM_2005_77_2_a6
M. Saralegi-Aranguren; R. Wolak. Basic intersection cohomology of conical fibrations. Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 235-257. http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a6/

[1] Goresky M., MacPherson R., “Intersection homology theory”, Topology, 19 (1980), 135–162 | DOI

[2] King H., “Topology invariance of intersection homology without sheaves”, Topology Appl., 20 (1985), 149–160 | DOI | MR | Zbl

[3] MacPherson R., “Intersection homology and perverse sheaves”, Colloquium Lectures, Annual Meeting of AMS (June 1991, San Francisco)

[4] Brylinsky J. L., “Equivariant intersection cohomology”, Contemp. Math., 132 (1992), 5–32 | MR

[5] Saralegi M., “Homological properties of stratified spaces”, Illinois J. Math., 38 (1994), 47–70 | MR | Zbl

[6] Verona A., “Le thèoréme de Rham pour les préstratifications abstraites”, C. R. Acad. Sci. Paris, 273 (1971), 886–889 | MR | Zbl

[7] Saralegi M., Wolak R., Basic intersection cohomology for singular riemanian foliations, Preprint

[8] Molino P., Riemannian Foliations, Progress in Math., 73, Birkhäuser, Basel, 1988 | Zbl

[9] Wolak R., “Pierrot's theorem for singular Riemannian foliations”, Publ. Matem., 38 (1994), 433–439 | MR | Zbl

[10] Bauer M., “Feuilletage singulier défini par une distribution presque régulière”, Collect. Math., 37:3 (1986), 189–209 | MR | Zbl

[11] Stefan P., “Accesible sets, orbits, and foliations with singularities”, Proc. London Math. Soc., 29 (1974), 699–713 | DOI | MR | Zbl

[12] Sussmann H. J., “Orbit of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | Zbl

[13] Vaisman I., Lectures on the Geometry of Poisson Manifolds, Progress in Math., 118, Birkhäser, Basel, 1994 | MR | Zbl

[14] Viflyantsev V. P., “Teorema Frobeniusa dlya raspredelenii s osobennostyami”, UMN, 32:5 (1977), 177–178 | Zbl

[15] Viflyantsev V. P., “Teorema Frobeniusa dlya differentsialnykh sistem s osobennostyami”, Vestn. MGU. Ser. 1. Matem., mekh., 106:3 (1980), 11–14

[16] Davis M., “Smooth $G$-manifolds as collections of fibre bundles”, Pacific J. Math., 77 (1978), 315–363 | MR | Zbl

[17] Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. II: Topological classification, Preprint, Universitè Montpellier II, 2001

[18] Boualem H., Molino P., “Modeles locaux satures de feuilletages Riemanniens singuliers”, C. R. Acad. Sci. Paris, 316 (1993), 913–916 | MR | Zbl

[19] Bredon G. E., Introduction to Compact Transformation Groups, Pure Appl. Math., 46, Acad. Press, New York, 1972 | MR | Zbl

[20] Epstein D. B. A., “Foliations with all leaves compact”, Ann. Inst. Fourier (Grenoble), 26 (1976), 265–282 | MR | Zbl

[21] Edwards R. D., Millet K. C., Sullivan D., “Foliations with all leaves compact”, Topology, 16 (1977), 13–32 | DOI | MR | Zbl

[22] Brasselet J. P., Hector G., Saralegi M., “Theoreme de Rham pour les varietes stratifiees”, Ann. Global Anal. Geom., 9 (1991), 211–243 | DOI | MR | Zbl

[23] Bredon G. E., Topology and Geometry, Graduate Text in Math., 139, Springer, Berlin, 1993 | MR | Zbl