Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_2_a6, author = {M. Saralegi-Aranguren and R. Wolak}, title = {Basic intersection cohomology of conical fibrations}, journal = {Matemati\v{c}eskie zametki}, pages = {235--257}, publisher = {mathdoc}, volume = {77}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a6/} }
M. Saralegi-Aranguren; R. Wolak. Basic intersection cohomology of conical fibrations. Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 235-257. http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a6/
[1] Goresky M., MacPherson R., “Intersection homology theory”, Topology, 19 (1980), 135–162 | DOI
[2] King H., “Topology invariance of intersection homology without sheaves”, Topology Appl., 20 (1985), 149–160 | DOI | MR | Zbl
[3] MacPherson R., “Intersection homology and perverse sheaves”, Colloquium Lectures, Annual Meeting of AMS (June 1991, San Francisco)
[4] Brylinsky J. L., “Equivariant intersection cohomology”, Contemp. Math., 132 (1992), 5–32 | MR
[5] Saralegi M., “Homological properties of stratified spaces”, Illinois J. Math., 38 (1994), 47–70 | MR | Zbl
[6] Verona A., “Le thèoréme de Rham pour les préstratifications abstraites”, C. R. Acad. Sci. Paris, 273 (1971), 886–889 | MR | Zbl
[7] Saralegi M., Wolak R., Basic intersection cohomology for singular riemanian foliations, Preprint
[8] Molino P., Riemannian Foliations, Progress in Math., 73, Birkhäuser, Basel, 1988 | Zbl
[9] Wolak R., “Pierrot's theorem for singular Riemannian foliations”, Publ. Matem., 38 (1994), 433–439 | MR | Zbl
[10] Bauer M., “Feuilletage singulier défini par une distribution presque régulière”, Collect. Math., 37:3 (1986), 189–209 | MR | Zbl
[11] Stefan P., “Accesible sets, orbits, and foliations with singularities”, Proc. London Math. Soc., 29 (1974), 699–713 | DOI | MR | Zbl
[12] Sussmann H. J., “Orbit of families of vector fields and integrability of distributions”, Trans. Amer. Math. Soc., 180 (1973), 171–188 | DOI | Zbl
[13] Vaisman I., Lectures on the Geometry of Poisson Manifolds, Progress in Math., 118, Birkhäser, Basel, 1994 | MR | Zbl
[14] Viflyantsev V. P., “Teorema Frobeniusa dlya raspredelenii s osobennostyami”, UMN, 32:5 (1977), 177–178 | Zbl
[15] Viflyantsev V. P., “Teorema Frobeniusa dlya differentsialnykh sistem s osobennostyami”, Vestn. MGU. Ser. 1. Matem., mekh., 106:3 (1980), 11–14
[16] Davis M., “Smooth $G$-manifolds as collections of fibre bundles”, Pacific J. Math., 77 (1978), 315–363 | MR | Zbl
[17] Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems. II: Topological classification, Preprint, Universitè Montpellier II, 2001
[18] Boualem H., Molino P., “Modeles locaux satures de feuilletages Riemanniens singuliers”, C. R. Acad. Sci. Paris, 316 (1993), 913–916 | MR | Zbl
[19] Bredon G. E., Introduction to Compact Transformation Groups, Pure Appl. Math., 46, Acad. Press, New York, 1972 | MR | Zbl
[20] Epstein D. B. A., “Foliations with all leaves compact”, Ann. Inst. Fourier (Grenoble), 26 (1976), 265–282 | MR | Zbl
[21] Edwards R. D., Millet K. C., Sullivan D., “Foliations with all leaves compact”, Topology, 16 (1977), 13–32 | DOI | MR | Zbl
[22] Brasselet J. P., Hector G., Saralegi M., “Theoreme de Rham pour les varietes stratifiees”, Ann. Global Anal. Geom., 9 (1991), 211–243 | DOI | MR | Zbl
[23] Bredon G. E., Topology and Geometry, Graduate Text in Math., 139, Springer, Berlin, 1993 | MR | Zbl