Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle
Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 163-175

Voir la notice de l'article provenant de la source Math-Net.Ru

For an integral equation on the unit circle $\Gamma$ of the form $(aI+bS+K)f=g$, where $a$ and $b$ are Hölder functions, $S$ is a singular integration operator, and $K$ is an integral operator with Hölder kernel, we consider a method of solution based on the discretization of integral operators using the rectangle rule. This method is justified under the assumption that the equation is solvable in $L_2(\Gamma)$ and the coefficients $a$ and $b$ satisfy the strong ellipticity condition.
@article{MZM_2005_77_2_a0,
     author = {M. \'E. Abramyan},
     title = {Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--175},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a0/}
}
TY  - JOUR
AU  - M. É. Abramyan
TI  - Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle
JO  - Matematičeskie zametki
PY  - 2005
SP  - 163
EP  - 175
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a0/
LA  - ru
ID  - MZM_2005_77_2_a0
ER  - 
%0 Journal Article
%A M. É. Abramyan
%T Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle
%J Matematičeskie zametki
%D 2005
%P 163-175
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a0/
%G ru
%F MZM_2005_77_2_a0
M. É. Abramyan. Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle. Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 163-175. http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a0/