Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle
Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 163-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an integral equation on the unit circle $\Gamma$ of the form $(aI+bS+K)f=g$, where $a$ and $b$ are Hölder functions, $S$ is a singular integration operator, and $K$ is an integral operator with Hölder kernel, we consider a method of solution based on the discretization of integral operators using the rectangle rule. This method is justified under the assumption that the equation is solvable in $L_2(\Gamma)$ and the coefficients $a$ and $b$ satisfy the strong ellipticity condition.
@article{MZM_2005_77_2_a0,
     author = {M. \'E. Abramyan},
     title = {Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--175},
     publisher = {mathdoc},
     volume = {77},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a0/}
}
TY  - JOUR
AU  - M. É. Abramyan
TI  - Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle
JO  - Matematičeskie zametki
PY  - 2005
SP  - 163
EP  - 175
VL  - 77
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a0/
LA  - ru
ID  - MZM_2005_77_2_a0
ER  - 
%0 Journal Article
%A M. É. Abramyan
%T Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle
%J Matematičeskie zametki
%D 2005
%P 163-175
%V 77
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a0/
%G ru
%F MZM_2005_77_2_a0
M. É. Abramyan. Justifying the convergence of the rectangular method for complete singular integral equations with continuous coefficients on the circle. Matematičeskie zametki, Tome 77 (2005) no. 2, pp. 163-175. http://geodesic.mathdoc.fr/item/MZM_2005_77_2_a0/

[1] Belotserkovskii S. M., Lifanov I. K., Chislennye metody v singulyarnykh integralnykh uravneniyakh, Nauka, M., 1985 | MR

[2] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[3] Abramyan M. E., Pilidi V. S., Obosnovanie metoda pryamougolnikov dlya singulyarnogo integralnogo uravneniya s postoyannymi koeffitsientami na okruzhnosti, Dep. VINITI 27.07.98 No2385–V98, Rostov-na-Donu, 1998

[4] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[5] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[6] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[7] Abramyan M. E., Obosnovanie metoda pryamougolnikov dlya polnogo singulyarnogo integralnogo uravneniya s nepreryvnymi koeffitsientami na okruzhnosti, Dep. VINITI 25.10.2001 No2218–V2001, Rostov-na-Donu, 2001

[8] Kozak A. V., “Lokalnyi printsip v teorii proektsionnykh metodov”, Dokl. AN SSSR, 212 (1973), 1287–1289 | MR | Zbl

[9] Pilidi V. S., “Kriterii ravnomernoi obratimosti regulyarnykh approksimatsii odnomernykh singulyarnykh integralnykh operatorov s kusochno-nepreryvnymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 54:6 (1990), 1270–1294 | MR

[10] Van der Varden B. L., Algebra, Nauka, M., 1976 | MR

[11] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973 | MR

[12] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[13] Integralnye uravneniya, eds. Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A., Mikhlin S. G., Rakovschik L. S., Stetsenko V.\, Nauka, M., 1968 | MR