Cohomology of solvable lie algebras and solvmanifolds
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 67-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cohomology $H^*_{\lambda\omega}(G/\Gamma,\mathbb C)$ of the de Rham complex $\Lambda^*(G/\Gamma)\otimes\mathbb C$ of a compact solvmanifold $G/\Gamma$ with deformed differential $d_{\lambda\omega}=d+\lambda\omega$, where $\omega$ is a closed 1-form, is studied. Such cohomologies naturally arise in Morse–Novikov theory. It is shown that, for any completely solvable Lie group $G$ containing a cocompact lattice $\Gamma\subset G$, the cohomology $H^*_{\lambda\omega}(G/\Gamma,\mathbb C)$ is isomorphic to the cohomology $H^*_{\lambda\omega}(\mathfrak g)$ of the tangent Lie algebra $\mathfrak g$ of the group $G$ with coefficients in the one-dimensional representation $\rho_{\lambda\omega}\colon\mathfrak g\to\mathbb K$ defined by $\rho_{\lambda\omega}(\xi)=\lambda\omega(\xi)$. Moreover, the cohomology $H^*_{\lambda\omega}(G/\Gamma,\mathbb C)$ is nontrivial if and only if $-\lambda[\omega]$ belongs to a finite subset $\widetilde\Omega_{\mathfrak g}$ of $H^1(G/\Gamma,\mathbb C)$ defined in terms of the Lie algebra $\mathfrak g$.
@article{MZM_2005_77_1_a5,
     author = {D. V. Millionshchikov},
     title = {Cohomology of solvable lie algebras and solvmanifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {67--79},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a5/}
}
TY  - JOUR
AU  - D. V. Millionshchikov
TI  - Cohomology of solvable lie algebras and solvmanifolds
JO  - Matematičeskie zametki
PY  - 2005
SP  - 67
EP  - 79
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a5/
LA  - ru
ID  - MZM_2005_77_1_a5
ER  - 
%0 Journal Article
%A D. V. Millionshchikov
%T Cohomology of solvable lie algebras and solvmanifolds
%J Matematičeskie zametki
%D 2005
%P 67-79
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a5/
%G ru
%F MZM_2005_77_1_a5
D. V. Millionshchikov. Cohomology of solvable lie algebras and solvmanifolds. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 67-79. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a5/

[1] Novikov S. P., “Mnogoznachnye funktsii i funktsionaly. Analog teorii Morsa”, Dokl. AN SSSR, 260:1 (1981), 31–35 | Zbl

[2] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl

[3] Novikov S. P., “Blokhovskie gomologii. Kriticheskie tochki funktsii i zamknutykh $1$-form”, Dokl. AN SSSR, 287:6 (1986), 1321–1324 | MR | Zbl

[4] Pazhitnov A. V., “Analiticheskoe dokazatelstvo veschestvennoi chasti neravenstv Novikova”, Dokl. AN SSSR, 293:6 (1987), 1305–1307 | MR | Zbl

[5] Witten E., “Supersymmetry and Morse theory”, J. Differential Geom., 17 (1982), 661–692 | MR | Zbl

[6] Alaniya L. A., “Kogomologii s lokalnymi koeffitsientami nekotorykh nilmnogoobrazii”, UMN, 54:5 (1999), 147–148 | MR

[7] Millionschikov D. V., “Kogomologii nilmnogoobrazii i teorema Goncharovoi”, UMN, 56:4 (2001), 153–154

[8] Nomizu K., “On the cohomology of homogeneous spaces of nilpotent Lie groups”, Ann. of Math., 59 (1954), 531–538 | DOI | MR | Zbl

[9] Dixmier J., “Cohomologie des algebres de Lie nilpotentes”, Acta Sci. Math. (Szeged), 16 (1955), 246–250 | Zbl

[10] Hattori A., “Spectral sequence in the deRham cohomology of fibre bundles”, J. Fac. Sci. Univ. Tokyo. Sect. 1, 8:4 (1960), 289–331 | MR | Zbl

[11] Millionschikov D. V., “Kogomologii s lokalnymi koeffitsientami solvmnogoobrazii i zadachi teorii Morsa–Novikova”, UMN, 57:4 (2002), 183–184 | Zbl

[12] Stinrod N., Topologiya kosykh proizvedenii, IL, M., 1953

[13] Serr Zh.-P., Algebry Li i gruppy Li, Mir, M., 1969 | Zbl

[14] Maltsev A. I., “Ob odnom klasse odnorodnykh prostranstv”, Izv. AN SSSR. Ser. matem., 13:1 (1949), 9–32

[15] Mostow G. D., “Factor spaces of solvable groups”, Ann. of Math., 60 (1954), 1–27 | DOI | Zbl

[16] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977

[17] Mostow G. D., “Cohomology of topological groups and solvmanifolds”, Ann. of Math., 73 (1961), 20–48 | DOI | Zbl