Cohomology of solvable lie algebras and solvmanifolds
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 67-79
Voir la notice de l'article provenant de la source Math-Net.Ru
The cohomology $H^*_{\lambda\omega}(G/\Gamma,\mathbb C)$ of the de Rham complex $\Lambda^*(G/\Gamma)\otimes\mathbb C$ of a compact solvmanifold $G/\Gamma$ with deformed differential $d_{\lambda\omega}=d+\lambda\omega$, where $\omega$ is a closed 1-form, is studied. Such cohomologies naturally arise in Morse–Novikov theory. It is shown that, for any completely solvable Lie group $G$ containing a cocompact lattice $\Gamma\subset G$, the cohomology $H^*_{\lambda\omega}(G/\Gamma,\mathbb C)$ is isomorphic to the cohomology $H^*_{\lambda\omega}(\mathfrak g)$ of the tangent Lie algebra $\mathfrak g$ of the group $G$ with coefficients in the one-dimensional representation $\rho_{\lambda\omega}\colon\mathfrak g\to\mathbb K$ defined by $\rho_{\lambda\omega}(\xi)=\lambda\omega(\xi)$. Moreover, the cohomology $H^*_{\lambda\omega}(G/\Gamma,\mathbb C)$ is nontrivial if and only if $-\lambda[\omega]$ belongs to a finite subset $\widetilde\Omega_{\mathfrak g}$ of $H^1(G/\Gamma,\mathbb C)$ defined in terms of the Lie algebra $\mathfrak g$.
@article{MZM_2005_77_1_a5,
author = {D. V. Millionshchikov},
title = {Cohomology of solvable lie algebras and solvmanifolds},
journal = {Matemati\v{c}eskie zametki},
pages = {67--79},
publisher = {mathdoc},
volume = {77},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a5/}
}
D. V. Millionshchikov. Cohomology of solvable lie algebras and solvmanifolds. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 67-79. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a5/