Riesz rising sun lemma for several variables and the John--Nirenberg inequality
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 53-66
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain a multidimensional analog of the well-known Riesz rising sun lemma. We prove a more precise version of this lemma for space dimension $d=2$. We use these lemmas to establish an anisotropic analog of the John–Nirenberg inequality for functions of bounded mean oscillation with an exact constant in the exponent. Earlier, this exact constant was only known in the one-dimensional case.
@article{MZM_2005_77_1_a4,
author = {A. A. Korenovskii},
title = {Riesz rising sun lemma for several variables and the {John--Nirenberg} inequality},
journal = {Matemati\v{c}eskie zametki},
pages = {53--66},
publisher = {mathdoc},
volume = {77},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a4/}
}
A. A. Korenovskii. Riesz rising sun lemma for several variables and the John--Nirenberg inequality. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 53-66. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a4/