Riesz rising sun lemma for several variables and the John--Nirenberg inequality
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 53-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a multidimensional analog of the well-known Riesz rising sun lemma. We prove a more precise version of this lemma for space dimension $d=2$. We use these lemmas to establish an anisotropic analog of the John–Nirenberg inequality for functions of bounded mean oscillation with an exact constant in the exponent. Earlier, this exact constant was only known in the one-dimensional case.
@article{MZM_2005_77_1_a4,
     author = {A. A. Korenovskii},
     title = {Riesz rising sun lemma for several variables and the {John--Nirenberg} inequality},
     journal = {Matemati\v{c}eskie zametki},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a4/}
}
TY  - JOUR
AU  - A. A. Korenovskii
TI  - Riesz rising sun lemma for several variables and the John--Nirenberg inequality
JO  - Matematičeskie zametki
PY  - 2005
SP  - 53
EP  - 66
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a4/
LA  - ru
ID  - MZM_2005_77_1_a4
ER  - 
%0 Journal Article
%A A. A. Korenovskii
%T Riesz rising sun lemma for several variables and the John--Nirenberg inequality
%J Matematičeskie zametki
%D 2005
%P 53-66
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a4/
%G ru
%F MZM_2005_77_1_a4
A. A. Korenovskii. Riesz rising sun lemma for several variables and the John--Nirenberg inequality. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 53-66. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a4/

[1] Calderón A. P., Zygmund A., “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85–139 | MR | Zbl

[2] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[3] Riesz F., “Sur un téorème de maximum de $M_0$ Hardy et Littlewood”, J. London Math. Soc., 7 (1932), 10–13 | DOI | Zbl

[4] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, IL, M., 1948

[5] Klemes I., “A mean oscillation inequality”, Proc. Amer. Math. Soc., 93:3 (1985), 497–500 | DOI | MR | Zbl

[6] Jessen B., Marcinkiewicz J., Zygmund A., “Note on the differentiability of multiple integrals”, Fund. Math., 25 (1935), 217–234 | Zbl

[7] Gusman M., Differentsirovanie integralov v $\mathbf{R}^n$, Mir, M., 1978 | MR

[8] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[9] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | Zbl

[10] Korenovskii A. A., “O svyazi mezhdu srednimi kolebaniyami i tochnymi pokazatelyami summiruemosti funktsii”, Matem. sb., 181:12 (1990), 1721–1727

[11] Garsia A. M., Rodemich E., “Monotonicity of certain functionals under rearrangements”, Ann. Inst. Fourier, Grenoble, 24:2 (1974), 67–116 | Zbl

[12] Bennett C., De Vore R. A., Sharpley R., “Weak-$L^\infty$ and $\mathrm{BMO}$”, Ann. Math., 113:2 (1981), 601–611 | DOI | Zbl