Normal forms near an invariant torus and the asymptotic eigenvalues of the operator $\langle V,\nabla\rangle-\epsilon\Delta$
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 152-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_2005_77_1_a13,
     author = {M. A. Poteryakhin},
     title = {Normal forms near an invariant torus and the asymptotic eigenvalues of the operator $\langle V,\nabla\rangle-\epsilon\Delta$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {152--156},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a13/}
}
TY  - JOUR
AU  - M. A. Poteryakhin
TI  - Normal forms near an invariant torus and the asymptotic eigenvalues of the operator $\langle V,\nabla\rangle-\epsilon\Delta$
JO  - Matematičeskie zametki
PY  - 2005
SP  - 152
EP  - 156
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a13/
LA  - ru
ID  - MZM_2005_77_1_a13
ER  - 
%0 Journal Article
%A M. A. Poteryakhin
%T Normal forms near an invariant torus and the asymptotic eigenvalues of the operator $\langle V,\nabla\rangle-\epsilon\Delta$
%J Matematičeskie zametki
%D 2005
%P 152-156
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a13/
%G ru
%F MZM_2005_77_1_a13
M. A. Poteryakhin. Normal forms near an invariant torus and the asymptotic eigenvalues of the operator $\langle V,\nabla\rangle-\epsilon\Delta$. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 152-156. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a13/

[1] Dobrokhotov S. Yu., Kolokoltsov V. N., Olive V. M., Matem. zametki, 58:2 (1995), 301–306 | MR | Zbl

[2] Albeverio S., Dobrokhotov S. Yu., Poteryakhin M. A., On quasimodes of small diffusion operators, corresponding to stable invariant with nonregular neighborhoods, SFB 611, No 51, Universität Bonn, Bonn, 2003

[3] Bryuno A. D., Ogranichennaya zadacha trekh tel: ploskie periodicheskie orbity, Nauka, M., 1990 | MR | Zbl

[4] Broer H. W., Huitema G. B., Sevryuk M. B., Quasi-Periodic Motions in Families of Dynamical Systems, Lecture Notes in Math., 1645, Springer, Berlin, 1996 | MR

[5] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1978 | MR

[6] Belov V. V., Dobrokhotov S. Yu., TMF, 92:2 (1992), 215–254 | MR

[7] Belov V. V., Dobrokhotov O. S., Dobrokhotov S. Yu., Matem. zametki, 69:4 (2001), 483–514 | Zbl

[8] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978

[9] Yakubovich V. Ya., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami, Nauka, M., 1972

[10] Belov V. V., Dobrokhotov S. Yu., Maksimov V. A., TMF, 135:3 (2003), 378–408

[11] Fok V. A., Vestn. LGU, 1952, no. 6, 67–73

[12] Egorov Yu. V., UMN, 24:5 (1969), 235–236 | Zbl

[13] Babich V. M., “Sobstvennye funktsii, sosredotochennye v okrestnosti zamknutoi geodezicheskoi”, Zapiski nauch. sem. LOMI, 9, Nauka, L., 1968, 15–63 | Zbl

[14] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | Zbl