On the resolution of 3-dimensional terminal singularities
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 127-140
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that there is at most one nonrational exceptional divisor with discrepancy 1 over a three-dimensional terminal point of type $cD$. If such a divisor exists, then it is birationally isomorphic to the surface $\mathbb P^1\times C$, where $C$ is a hyperelliptic (for $g(C)>1$) curve.
@article{MZM_2005_77_1_a11,
author = {D. A. Stepanov},
title = {On the resolution of 3-dimensional terminal singularities},
journal = {Matemati\v{c}eskie zametki},
pages = {127--140},
publisher = {mathdoc},
volume = {77},
number = {1},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a11/}
}
D. A. Stepanov. On the resolution of 3-dimensional terminal singularities. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a11/