On the resolution of 3-dimensional terminal singularities
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 127-140

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that there is at most one nonrational exceptional divisor with discrepancy 1 over a three-dimensional terminal point of type $cD$. If such a divisor exists, then it is birationally isomorphic to the surface $\mathbb P^1\times C$, where $C$ is a hyperelliptic (for $g(C)>1$) curve.
@article{MZM_2005_77_1_a11,
     author = {D. A. Stepanov},
     title = {On the resolution of 3-dimensional terminal singularities},
     journal = {Matemati\v{c}eskie zametki},
     pages = {127--140},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a11/}
}
TY  - JOUR
AU  - D. A. Stepanov
TI  - On the resolution of 3-dimensional terminal singularities
JO  - Matematičeskie zametki
PY  - 2005
SP  - 127
EP  - 140
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a11/
LA  - ru
ID  - MZM_2005_77_1_a11
ER  - 
%0 Journal Article
%A D. A. Stepanov
%T On the resolution of 3-dimensional terminal singularities
%J Matematičeskie zametki
%D 2005
%P 127-140
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a11/
%G ru
%F MZM_2005_77_1_a11
D. A. Stepanov. On the resolution of 3-dimensional terminal singularities. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a11/