Szeg\H o theorem, Carath\'eodory domains, and boundedness of calculating functionals
Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $G$ is a bounded simply connected domain on the plane with boundary $\Gamma$, $z_0\in G$, $\omega$ is the harmonic measure with respect to $z_0$, on $\Gamma$, $\mu$ is a finite Borel measure with support $\operatorname{supp}(\mu)\subseteq\Gamma$, $\mu_a+\mu_s$ is the decomposition of $\mu$ with respect to $\omega$, and $t$ is a positive real number. We solve the following problem: for what geometry of the domain $G$ is the condition $$ \int\ln\biggl(\frac{d\mu_a}{d\omega}\biggr)\,d\omega=-\infty $$ equivalent to the completeness of the polynomials in$L^t(\mu)$ or to the unboundedness of the calculating functional $p\to p(z_0)$, where $p$ is a polynomial in $L^t(\mu)$? We study the relationship between the densities of the algebras of rational functions in $L^t(\mu)$ and $C(\Gamma)$. For $t=2$, we obtain a sufficient criterion for the unboundedness of the calculating functional in the case of finite Borel measures with support of an arbitrary geometry.
@article{MZM_2005_77_1_a0,
     author = {F. G. Abdullaev and A. A. Dovgoshey},
     title = {Szeg\H o theorem, {Carath\'eodory} domains, and boundedness of calculating functionals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {77},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a0/}
}
TY  - JOUR
AU  - F. G. Abdullaev
AU  - A. A. Dovgoshey
TI  - Szeg\H o theorem, Carath\'eodory domains, and boundedness of calculating functionals
JO  - Matematičeskie zametki
PY  - 2005
SP  - 3
EP  - 15
VL  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a0/
LA  - ru
ID  - MZM_2005_77_1_a0
ER  - 
%0 Journal Article
%A F. G. Abdullaev
%A A. A. Dovgoshey
%T Szeg\H o theorem, Carath\'eodory domains, and boundedness of calculating functionals
%J Matematičeskie zametki
%D 2005
%P 3-15
%V 77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a0/
%G ru
%F MZM_2005_77_1_a0
F. G. Abdullaev; A. A. Dovgoshey. Szeg\H o theorem, Carath\'eodory domains, and boundedness of calculating functionals. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a0/