Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_77_1_a0, author = {F. G. Abdullaev and A. A. Dovgoshey}, title = {Szeg\H o theorem, {Carath\'eodory} domains, and boundedness of calculating functionals}, journal = {Matemati\v{c}eskie zametki}, pages = {3--15}, publisher = {mathdoc}, volume = {77}, number = {1}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a0/} }
TY - JOUR AU - F. G. Abdullaev AU - A. A. Dovgoshey TI - Szeg\H o theorem, Carath\'eodory domains, and boundedness of calculating functionals JO - Matematičeskie zametki PY - 2005 SP - 3 EP - 15 VL - 77 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a0/ LA - ru ID - MZM_2005_77_1_a0 ER -
F. G. Abdullaev; A. A. Dovgoshey. Szeg\H o theorem, Carath\'eodory domains, and boundedness of calculating functionals. Matematičeskie zametki, Tome 77 (2005) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/MZM_2005_77_1_a0/
[1] Szegö G., “Beiträge zur Theorie der Toeplitzschen Formen, I”, Math. Z., 6 (1920), 167–202 | DOI | MR
[2] Kolmogorov A. N., “Interpolirovanie i ekstrapolirovanie statsionarnykh sluchainykh posledovatelnostei”, Izv. AN SSSR. Ser. matem., 5 (1941), 3–14 | MR | Zbl
[3] Krein M. G., “Ob odnom obobschenii issledovanii G. Szegö, V. I. Smirnova i A. N. Kolmogorova”, Dokl. AN SSSR, 46 (1945), 95–98
[4] Thomson J., “Approximation in the mean by polynomials”, Ann. of Math., 133 (1991), 477–507 | DOI | Zbl
[5] Thomson J., “Bounded point evaluation and polynomial approximation”, Proc. Amer. Math. Soc., 123 (1995), 1757–1761 | DOI | MR | Zbl
[6] Akeroyd J., “An extension of Szegö's theorem”, Indiana Univ. Math. J., 43 (1994), 1339–1347 | DOI | MR | Zbl
[7] Akeroyd J., “An extension of Szegö's theorem, II”, Indiana Univ. Math. J., 45 (1996), 241–252 | DOI | MR | Zbl
[8] Akeroyd J., Saleeby E. G., “On polynomials approximation in the mean”, Contemprary Math., 232 (1999), 23–26 | MR | Zbl
[9] Akeroyd J., Saleeby E. G., “A class $P^t(d\mu)$ spaces whole point evaluations vary with $t$”, Proc. Amer. Math. Soc., 127 (1999), 537–542 | DOI | MR | Zbl
[10] Conway J. B., Subnormal Operators, Pitman, Boston, 1981 | MR | Zbl
[11] Volberg A. L., “Srednekvadraticheskaya polnota mnogochlenov za predelami teoremy Segë”, Dokl. AN SSSR, 241 (1978), 521–527
[12] Trent T., “Extension of the theorem of Szegö”, Michigan Math. J., 26 (1979), 373–377 | DOI
[13] Browder A., Introduction to function algebras, W. A. Benjamin, New York–Amsterdam, 1969 | MR | Zbl
[14] Helson H., Lowdenslager D., “Prediction theory and Fourier series in several variables”, Acta Math., 99 (1958), 165–202 | DOI | Zbl
[15] Stahl H., Totik V., General Orthogonal Polynomials, Cambridge University Press, Cambridge, 1992 | Zbl
[16] Gamelin T., Ravnomernye algebry, Mir, M., 1969
[17] Philip J. D., Interpolation and Approximation, Blaisdell Publ. Co., New York–Toronto–London, 1963
[18] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199
[19] Donald L. C., Measure Theory, Birkhäuser, Boston–Basel–Berlin, 1993
[20] Ullman J. L., “On the regular behavior of orthogonal polynomials”, Proc. London Math. Soc., 24 (1972), 119–148 | DOI | Zbl
[21] Rudin W., Functional Analysis, 2nd edition, McGaw-Hill, Singapore, 1991 | Zbl
[22] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, T. 1, Mir, M., 1980