On the Zeros of Laplace Transforms
Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 883-892
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $f$ is a positive, nondecreasing, and integrable function in the interval $(0,1)$. Then, by Pólya's theorem, all the zeros of the Laplace transform
$$
F(z)=\int_0^1e^{zt}f(t)\,dt
$$
lie in the left-hand half-plane $\operatorname{Re} z\le0$. In this paper, we assume that the additional condition of logarithmic convexity of $f$ in a left-hand neighborhood of the point $1$ is satisfied. We obtain the form of the left curvilinear half-plane and also, under the condition $f(+0)>0$, the form of the curvilinear strip containing all the zeros of $F(z)$.
@article{MZM_2004_76_6_a8,
author = {A. M. Sedletskii},
title = {On the {Zeros} of {Laplace} {Transforms}},
journal = {Matemati\v{c}eskie zametki},
pages = {883--892},
publisher = {mathdoc},
volume = {76},
number = {6},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a8/}
}
A. M. Sedletskii. On the Zeros of Laplace Transforms. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 883-892. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a8/