Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2004_76_6_a6, author = {L. A. Masal'tsev}, title = {Nil-Manifolds {Cannot} be {Immersed} as {Hypersurfaces} in {Euclidean} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {868--873}, publisher = {mathdoc}, volume = {76}, number = {6}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a6/} }
L. A. Masal'tsev. Nil-Manifolds Cannot be Immersed as Hypersurfaces in Euclidean Spaces. Matematičeskie zametki, Tome 76 (2004) no. 6, pp. 868-873. http://geodesic.mathdoc.fr/item/MZM_2004_76_6_a6/
[1] Rivertz H. J., An obstruction to isometric immersion of the threedimensional Heisenberg group into $\mathbb R^4$, Preprint series in Pure Mathematics No. 22, Matematick institut Univ. Oslo, Oslo, 1999
[2] Gromov M., Differentsialnye sootnosheniya s chastnymi proizvodnymi, Mir, M., 1990
[3] Hillman J. A., Four-manifolds, Geometries and Knots, Geometry and Topology Monographs, 5, University of Sydney, 2002 | MR
[4] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981
[5] Gordon C., “Riemannian manifolds isospectral on functions but not on $1$-forms”, J. Differential Geometry, 24 (1986), 79–96 | MR | Zbl
[6] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990 | Zbl
[7] Aminov Yu. A., Geometriya podmnogoobrazii, Naukova dumka, Kiev, 2002 | Zbl