Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series
Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 723-731

Voir la notice de l'article provenant de la source Math-Net.Ru

It follows from results of A. Yudin, V. Yudin, E. Belinskii, and I. Liflyand that if $m\ge2$ and a $2\pi$-periodic (in each variable) function $f(\mathbf x)\in C(T^m)$ belongs to the Nikol'skii class $h_\infty^{(m-1)/2}(T^m)$, then its multiple Fourier series is uniformly convergent over hyperbolic crosses. In this paper, we establish the finality of this result. More precisely, there exists a function in the class $h_\infty^{(m-1)/2}(T^m)$ whose Fourier series is divergent over hyperbolic crosses at some point.
@article{MZM_2004_76_5_a7,
     author = {M. I. Dyachenko},
     title = {Uniform {Convergence} of {Hyperbolic} {Partial} {Sums} of {Multiple} {Fourier} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {723--731},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a7/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series
JO  - Matematičeskie zametki
PY  - 2004
SP  - 723
EP  - 731
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a7/
LA  - ru
ID  - MZM_2004_76_5_a7
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series
%J Matematičeskie zametki
%D 2004
%P 723-731
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a7/
%G ru
%F MZM_2004_76_5_a7
M. I. Dyachenko. Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series. Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 723-731. http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a7/