Optimal Set of the Modulus of Continuity in the Sharp Jackson Inequality in the Space $L_2$
Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 666-674

Voir la notice de l'article provenant de la source Math-Net.Ru

To a function $f\in L_2[-\pi,\pi]$ and a compact set $Q\subset[-\pi,\pi]$ we assign the supremum $\omega(f,Q) =\sup_{t\in Q}\|f(\,\cdot\,+t)-f(\,\cdot\,)\|_{L_2[-\pi,\pi]}$, which is an analog of the modulus of continuity. We denote by $K(n,Q)$ the least constant in Jackson's inequality between the best approximation of the function $f$ by trigonometric polynomials of degree $n-1$ in the space $L_2[-\pi,\pi]$ and the modulus of continuity $\omega(f,Q)$. It follows from results due to Chernykh that $K(n,Q)\ge1/\sqrt2$ and $K(n,[0,\pi/n])=1/\sqrt2$. On the strength of a result of Yudin, we show that if the measure of the set $Q$ is less than $\pi/n$, then $K(n,Q)>1/\sqrt2$.
@article{MZM_2004_76_5_a2,
     author = {E. E. Berdysheva},
     title = {Optimal {Set} of the {Modulus} of {Continuity} in the {Sharp} {Jackson} {Inequality} in the {Space} $L_2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {666--674},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a2/}
}
TY  - JOUR
AU  - E. E. Berdysheva
TI  - Optimal Set of the Modulus of Continuity in the Sharp Jackson Inequality in the Space $L_2$
JO  - Matematičeskie zametki
PY  - 2004
SP  - 666
EP  - 674
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a2/
LA  - ru
ID  - MZM_2004_76_5_a2
ER  - 
%0 Journal Article
%A E. E. Berdysheva
%T Optimal Set of the Modulus of Continuity in the Sharp Jackson Inequality in the Space $L_2$
%J Matematičeskie zametki
%D 2004
%P 666-674
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a2/
%G ru
%F MZM_2004_76_5_a2
E. E. Berdysheva. Optimal Set of the Modulus of Continuity in the Sharp Jackson Inequality in the Space $L_2$. Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 666-674. http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a2/