Optimal Set of the Modulus of Continuity in the Sharp Jackson Inequality in the Space $L_2$
Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 666-674.

Voir la notice de l'article provenant de la source Math-Net.Ru

To a function $f\in L_2[-\pi,\pi]$ and a compact set $Q\subset[-\pi,\pi]$ we assign the supremum $\omega(f,Q) =\sup_{t\in Q}\|f(\,\cdot\,+t)-f(\,\cdot\,)\|_{L_2[-\pi,\pi]}$, which is an analog of the modulus of continuity. We denote by $K(n,Q)$ the least constant in Jackson's inequality between the best approximation of the function $f$ by trigonometric polynomials of degree $n-1$ in the space $L_2[-\pi,\pi]$ and the modulus of continuity $\omega(f,Q)$. It follows from results due to Chernykh that $K(n,Q)\ge1/\sqrt2$ and $K(n,[0,\pi/n])=1/\sqrt2$. On the strength of a result of Yudin, we show that if the measure of the set $Q$ is less than $\pi/n$, then $K(n,Q)>1/\sqrt2$.
@article{MZM_2004_76_5_a2,
     author = {E. E. Berdysheva},
     title = {Optimal {Set} of the {Modulus} of {Continuity} in the {Sharp} {Jackson} {Inequality} in the {Space} $L_2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {666--674},
     publisher = {mathdoc},
     volume = {76},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a2/}
}
TY  - JOUR
AU  - E. E. Berdysheva
TI  - Optimal Set of the Modulus of Continuity in the Sharp Jackson Inequality in the Space $L_2$
JO  - Matematičeskie zametki
PY  - 2004
SP  - 666
EP  - 674
VL  - 76
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a2/
LA  - ru
ID  - MZM_2004_76_5_a2
ER  - 
%0 Journal Article
%A E. E. Berdysheva
%T Optimal Set of the Modulus of Continuity in the Sharp Jackson Inequality in the Space $L_2$
%J Matematičeskie zametki
%D 2004
%P 666-674
%V 76
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a2/
%G ru
%F MZM_2004_76_5_a2
E. E. Berdysheva. Optimal Set of the Modulus of Continuity in the Sharp Jackson Inequality in the Space $L_2$. Matematičeskie zametki, Tome 76 (2004) no. 5, pp. 666-674. http://geodesic.mathdoc.fr/item/MZM_2004_76_5_a2/

[1] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987

[2] Babenko A. G., “On the Jackson–Stechkin inequality for the best $L^2$-approximations of functions by trigonometric polynomials”, Proc. Steklov. Inst. Mat. Suppl. 1, 2001, S30–S47 | MR

[3] Chernykh N. I., “O neravenstve Dzheksona v $L_2$”, Tr. MIAN, 88, Nauka, M., 1967, 71–74 | MR

[4] Chernykh N. I., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR

[5] Arestov V. V., Chernykh N. I., “On the $L_2$-approximation of periodic functions by trigonometric polynomials”, Approximation and Function Spaces, Proc. Conf. (Gdan'sk, 1979), North-Holland, Amsterdam, 1981, 25–43 | MR

[6] Berdyshev V. I., “O teoreme Dzheksona v $L_p$”, Tr. MIAN, 88, Nauka, M., 1967, 3–16 | MR | Zbl

[7] Yudin V. A., “Odna ekstremalnaya zadacha dlya funktsii raspredeleniya”, Matem. zametki, 63:2 (1998), 316–320 | MR | Zbl

[8] Babenko A. G., “O tochnoi konstante v neravenstve Dzheksona v $L^2$”, Matem. zametki, 39:5 (1986), 651–664 | MR | Zbl

[9] Arestov V. V., Popov V. Yu., “Neravenstva Dzheksona na sfere v $L_2$”, Izv. vuzov. Matem., 1995, no. 8 (399), 13–20 | MR | Zbl

[10] Berdysheva E. E., “Several related extremal problems for multivariate entire functions of exponential type”, East J. Approx., 6:2 (2000), 241–260 | MR | Zbl

[11] Arestov V. V., Babenko A. G., “Continuity of the best constant in the Jackson inequality in $L^2$ with respect to argument of modulus of continuity”, Approximation Theory, A volume dedicated to B. Sendov, ed. B. Bojanov, DARBA, Sofia, 2002, 13–23 | MR | Zbl

[12] Dunford N., Schwartz J. T., Linear Operators. Part I. General Theory, Pure and Applied Mathematics, 7, Interscience Publ., New York–London, 1958 ; Reprint, John Wiley, New York, 1988 | MR

[13] Stein E. M., Weiss G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Series, 32, no. 32, Princeton Univ. Press, Princeton, 1971