A Generalization of Men'shov's Theorem on Functions Satisfying Condition $K''$
Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 578-591.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider functions $f(z)$, $z\!\in\! D\!\subset\!\mathbb C$, determining the mappings $w = f(z)$ that, at the points $\zeta$ of the domain $D$, have the same dilatation ratio along the three pairwise noncollinear rays issuing from $\zeta$. Under an additional condition on the disposition of rays, the Trokhimchuk generalization of Men'shov's theorem on the holomorphy of such functions can be extended to functions for which the assumption that they are continuous is replaced by the assumption that $(\log^+|f(z)|)^p$ is integrable with respect to the plane Lebesgue measure for each positive $p 2$.
@article{MZM_2004_76_4_a9,
     author = {D. S. Telyakovskii},
     title = {A {Generalization} of {Men'shov's} {Theorem} on {Functions} {Satisfying} {Condition} $K''$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {578--591},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a9/}
}
TY  - JOUR
AU  - D. S. Telyakovskii
TI  - A Generalization of Men'shov's Theorem on Functions Satisfying Condition $K''$
JO  - Matematičeskie zametki
PY  - 2004
SP  - 578
EP  - 591
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a9/
LA  - ru
ID  - MZM_2004_76_4_a9
ER  - 
%0 Journal Article
%A D. S. Telyakovskii
%T A Generalization of Men'shov's Theorem on Functions Satisfying Condition $K''$
%J Matematičeskie zametki
%D 2004
%P 578-591
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a9/
%G ru
%F MZM_2004_76_4_a9
D. S. Telyakovskii. A Generalization of Men'shov's Theorem on Functions Satisfying Condition $K''$. Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 578-591. http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a9/

[1] Menchoff D., “Sur les fonctions monogénes”, Bull. Soc. Math. France, 59 (1931), 141–182 | MR | Zbl

[2] Bohr H., “Ueber streckentreue und konforme Abbildung”, Math. Z., 1 (1918) | DOI | MR

[3] Trokhimchuk Yu. Yu., Nepreryvnye otobrazheniya i usloviya monogennosti, Fizmatgiz, M., 1963

[4] Brodovich M. T., “Ob usloviyakh monogennosti ne nepreryvnykh otobrazhenii”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, no. 12, KhGU, Kharkov, 1970, 94–103

[5] Telyakovskii D. S., “Obobschenie odnoi teoremy Menshova o monogennosti”, Tezisy dokladov 10-i Saratovskoi zimnei shkoly, Saratovskii gos. un-t, Saratov, 2000, 135–136

[6] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[7] Saks S., Teoriya integrala, IL, M., 1949

[8] Telyakovskii D. S., “Obobschenie odnoi teoremy Menshova o monogennosti”, Izv. AN SSSR. Ser. matem., 53:4 (1989), 886–896 | MR | Zbl

[9] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966