Stability Theorems in the First-Order Approximation for Differential Inclusions
Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 517-530.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish multi-valued and infinite-dimensional versions of stability theorems in the first-order approximation. The differential inclusions treated as first-order approximations can be nonautonomous and, in several cases under study, nonhomogeneous with respect to the phase variable. We outline applications in stability theory of solutions to parabolic inclusions.
@article{MZM_2004_76_4_a4,
     author = {V. S. Klimov},
     title = {Stability {Theorems} in the {First-Order} {Approximation} for {Differential} {Inclusions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {517--530},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a4/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Stability Theorems in the First-Order Approximation for Differential Inclusions
JO  - Matematičeskie zametki
PY  - 2004
SP  - 517
EP  - 530
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a4/
LA  - ru
ID  - MZM_2004_76_4_a4
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Stability Theorems in the First-Order Approximation for Differential Inclusions
%J Matematičeskie zametki
%D 2004
%P 517-530
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a4/
%G ru
%F MZM_2004_76_4_a4
V. S. Klimov. Stability Theorems in the First-Order Approximation for Differential Inclusions. Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 517-530. http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a4/

[1] Gaevskii G., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[2] Oben Zh. P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988

[3] Klimov V. S., “K zadache o periodicheskikh resheniyakh operatornykh differentsialnykh vklyuchenii”, Izv. AN SSSR. Ser. matem., 53:2 (1989), 309–327 | MR

[4] Klimov V. S., “Evolyutsionnye parabolicheskie neravenstva s mnogoznachnymi operatorami”, Matem. sb., 184:8 (1993), 37–54 | MR | Zbl

[5] Pokhozhaev S. I., “O razreshimosti nelineinykh uravnenii s nechetnymi operatorami”, Funktsion. analiz i ego prilozh., 1:3 (1967), 66–73 | MR | Zbl

[6] Klimov V. S., “Ob operatore sdviga po traektoriyam parabolicheskikh vklyuchenii”, Differents. uravneniya, 31:10 (1995), 1716–1721 | MR | Zbl

[7] Klimov V. S., “Ogranichennye resheniya differentsialnykh vklyuchenii s odnorodnoi glavnoi chastyu”, Izv. RAN. Ser. matem., 64:4 (2000), 109–130 | MR | Zbl

[8] Dubinskii Yu. A., “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 9, 1976, 5–130 | Zbl

[9] Barbashin E. A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967 | Zbl

[10] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970

[11] Morozov M. V., “O svoistvakh periodicheskikh differentsialnykh vklyuchenii”, Differents. uravneniya, 36:5 (2000), 612–617 | MR | Zbl

[12] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985

[13] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[14] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1960), 59–126 | MR

[15] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | Zbl

[16] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966