Stability Theorems in the First-Order Approximation for Differential Inclusions
Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 517-530

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish multi-valued and infinite-dimensional versions of stability theorems in the first-order approximation. The differential inclusions treated as first-order approximations can be nonautonomous and, in several cases under study, nonhomogeneous with respect to the phase variable. We outline applications in stability theory of solutions to parabolic inclusions.
@article{MZM_2004_76_4_a4,
     author = {V. S. Klimov},
     title = {Stability {Theorems} in the {First-Order} {Approximation} for {Differential} {Inclusions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {517--530},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a4/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Stability Theorems in the First-Order Approximation for Differential Inclusions
JO  - Matematičeskie zametki
PY  - 2004
SP  - 517
EP  - 530
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a4/
LA  - ru
ID  - MZM_2004_76_4_a4
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Stability Theorems in the First-Order Approximation for Differential Inclusions
%J Matematičeskie zametki
%D 2004
%P 517-530
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a4/
%G ru
%F MZM_2004_76_4_a4
V. S. Klimov. Stability Theorems in the First-Order Approximation for Differential Inclusions. Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 517-530. http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a4/