Sharp Estimates for Integral Means for Three Classes of Domains
Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 510-516

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the following sharp estimate is proved: $$ \int_0^{2\pi}|F'(e^{i\theta})|^p\,d\theta \le\sqrt\pi2^{1+p}\frac{\Gamma(1/2+p/2)}{\Gamma(1+p/2)}, \qquad p>-1, $$ where $F$ is the conformal mapping of the domain $D^-=\{\zeta\colon |\zeta|>1\}$ onto the exterior of a convex curve, with $F'(\infty)=1$. For $p=1$ this result is due to Pólya and Shiffer. We also obtain several generalizations of this estimate under other geometric assumptions about the structure of the domain $F(D^-)$.
@article{MZM_2004_76_4_a3,
     author = {I. R. Kayumov},
     title = {Sharp {Estimates} for {Integral} {Means} for {Three} {Classes} of {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {510--516},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a3/}
}
TY  - JOUR
AU  - I. R. Kayumov
TI  - Sharp Estimates for Integral Means for Three Classes of Domains
JO  - Matematičeskie zametki
PY  - 2004
SP  - 510
EP  - 516
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a3/
LA  - ru
ID  - MZM_2004_76_4_a3
ER  - 
%0 Journal Article
%A I. R. Kayumov
%T Sharp Estimates for Integral Means for Three Classes of Domains
%J Matematičeskie zametki
%D 2004
%P 510-516
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a3/
%G ru
%F MZM_2004_76_4_a3
I. R. Kayumov. Sharp Estimates for Integral Means for Three Classes of Domains. Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 510-516. http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a3/