Sharp Estimates for Integral Means for Three Classes of Domains
Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 510-516
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the following sharp estimate is proved:
$$
\int_0^{2\pi}|F'(e^{i\theta})|^p\,d\theta
\le\sqrt\pi2^{1+p}\frac{\Gamma(1/2+p/2)}{\Gamma(1+p/2)},
\qquad p>-1,
$$
where $F$ is the conformal mapping of the domain $D^-=\{\zeta\colon |\zeta|>1\}$ onto the exterior of a convex curve, with $F'(\infty)=1$. For $p=1$ this result is due to Pólya and Shiffer. We also obtain several generalizations of this estimate under other geometric assumptions about the structure of the domain $F(D^-)$.
@article{MZM_2004_76_4_a3,
author = {I. R. Kayumov},
title = {Sharp {Estimates} for {Integral} {Means} for {Three} {Classes} of {Domains}},
journal = {Matemati\v{c}eskie zametki},
pages = {510--516},
publisher = {mathdoc},
volume = {76},
number = {4},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a3/}
}
I. R. Kayumov. Sharp Estimates for Integral Means for Three Classes of Domains. Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 510-516. http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a3/