Sharp Estimates for Integral Means for Three Classes of Domains
Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 510-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the following sharp estimate is proved: $$ \int_0^{2\pi}|F'(e^{i\theta})|^p\,d\theta \le\sqrt\pi2^{1+p}\frac{\Gamma(1/2+p/2)}{\Gamma(1+p/2)}, \qquad p>-1, $$ where $F$ is the conformal mapping of the domain $D^-=\{\zeta\colon |\zeta|>1\}$ onto the exterior of a convex curve, with $F'(\infty)=1$. For $p=1$ this result is due to Pólya and Shiffer. We also obtain several generalizations of this estimate under other geometric assumptions about the structure of the domain $F(D^-)$.
@article{MZM_2004_76_4_a3,
     author = {I. R. Kayumov},
     title = {Sharp {Estimates} for {Integral} {Means} for {Three} {Classes} of {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {510--516},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a3/}
}
TY  - JOUR
AU  - I. R. Kayumov
TI  - Sharp Estimates for Integral Means for Three Classes of Domains
JO  - Matematičeskie zametki
PY  - 2004
SP  - 510
EP  - 516
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a3/
LA  - ru
ID  - MZM_2004_76_4_a3
ER  - 
%0 Journal Article
%A I. R. Kayumov
%T Sharp Estimates for Integral Means for Three Classes of Domains
%J Matematičeskie zametki
%D 2004
%P 510-516
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a3/
%G ru
%F MZM_2004_76_4_a3
I. R. Kayumov. Sharp Estimates for Integral Means for Three Classes of Domains. Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 510-516. http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a3/

[1] Avkhadiev F. G., Aksentev L. A., “Osnovnye rezultaty v dostatochnykh usloviyakh odnolistnosti analiticheskikh funktsii”, UMN, 30:4 (184) (1975), 3–60 | MR | Zbl

[2] Baernstein A., “Integral means, univalent functions and circular symmetrization”, Acta Math., 133 (1974), 139–169 | DOI | MR

[3] Leung Y. J., “Integral means of the derivatives of some univalent functions”, Bull. London Math. Soc., 11 (1979), 289–294 | DOI | MR | Zbl

[4] Clunie J., Duren P. L., “Addendum: An arclength problem for close-to-convex functions”, J. London Math. Soc., 41 (1966), 181–182 | DOI | MR | Zbl

[5] MacGregor T. H., “Applications of extreme point theory to univalent functions”, Michigan Math. J., 19 (1972), 361–376 | DOI | MR | Zbl

[6] Makarov N. G., “Fine structure of harmonic measure”, St.-Petersbg. Math. J., 10:2 (1999), 217–268 | MR | Zbl

[7] Carleson L., Jones P. W., “On coefficient problems for univalent functions and conformal dimension”, Duke Math. J., 66:2 (1992), 169–206 | DOI | MR | Zbl

[8] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992 | Zbl

[9] Bertillson D., On Brennan's Conjecture in Conformal Mapping, Doctoral Thesis, Royal Institute Technology, Stockholm, 1999

[10] Kayumov I. R., “Lower estimates for the integral means spectrum”, Complex Variables, 44 (2001), 165–171 | MR | Zbl

[11] Kayumov I. R., “Lower estimate for the integral means spectrum for $p=-1$”, Proc. Amer. Math. Soc., 130:4 (2001), 1005–1007 | DOI | MR

[12] Polia G., Segë G., Izoperimetricheskie neravenstva matematicheskoi fiziki, Fizmatlit, M., 1962

[13] Pólya G., Shiffer M., “Sur la reprépresentation conforme de l'extérieur d'une courbe fermée convex”, C. R. Acad. Sci. Paris, 248:20 (1959), 2837–2839 | MR | Zbl

[14] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966

[15] Carleson L., Makarov N. G., “Some results connected with Brennan's conjecture”, Ark. Mat., 32 (1994), 33–62 | DOI | MR | Zbl