Deviation Estimates for Random Walks and Stochastic Methods for Solving the Schr\"odinger Equation
Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 610-624.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stochastic representation of solutions of the Cauchy problem for the Schrödinger equation is used in order to construct unitary matrix approximations of the resolving operator. We show that the probability distribution of deviations of random walks allows one to estimate the increase rate of derivatives and the support of solutions.
@article{MZM_2004_76_4_a12,
     author = {A. M. Chebotarev and A. V. Polyakov},
     title = {Deviation {Estimates} for {Random} {Walks} and {Stochastic} {Methods} for {Solving} the {Schr\"odinger} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {610--624},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a12/}
}
TY  - JOUR
AU  - A. M. Chebotarev
AU  - A. V. Polyakov
TI  - Deviation Estimates for Random Walks and Stochastic Methods for Solving the Schr\"odinger Equation
JO  - Matematičeskie zametki
PY  - 2004
SP  - 610
EP  - 624
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a12/
LA  - ru
ID  - MZM_2004_76_4_a12
ER  - 
%0 Journal Article
%A A. M. Chebotarev
%A A. V. Polyakov
%T Deviation Estimates for Random Walks and Stochastic Methods for Solving the Schr\"odinger Equation
%J Matematičeskie zametki
%D 2004
%P 610-624
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a12/
%G ru
%F MZM_2004_76_4_a12
A. M. Chebotarev; A. V. Polyakov. Deviation Estimates for Random Walks and Stochastic Methods for Solving the Schr\"odinger Equation. Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 610-624. http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a12/

[1] Manz J., “Molecular wavepacket dynamics: Theory for experiments 1926–1996”, Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at Atomic-Scale Resolution, ed. V. Sundström, Imperial College Press, London, 1997, 80–318

[2] Tal-Ezer H., Kosloff R., “An accurate and efficient scheme for propagating the time dependent Schrödinger equation”, J. Chem. Phys., 81 (1984), 3967–3971 | DOI

[3] Leforestier C. et al., “A comparison of different propagation schemes for the time dependent Schrödinger equation”, J. Comp. Phys., 94 (1991), 59–80 | DOI | MR | Zbl

[4] Numerical Grid Methods and Their Applications to Schrödinger Equation, ed. Cerjan C., Kluwer, Netherlands, 1993

[5] Huang Y., Kouri D. J., Hoffman D. K., “A general, energy-separable polynomial representation of the time-independent full Green operator with application to time-independent wavepacket forms of Schrödinger and Lippmann–Schwinger equations”, Chem. Phys. Lett., 225 (1994), 37–45 | DOI

[6] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982

[7] Chebotarev A. M., “Predstavlenie resheniya uravneniya Shredingera v vide matematicheskogo ozhidaniya funktsionalov skachkoobraznogo protsessa”, Matem. zametki, 24:5 (1978), 699–706 | MR | Zbl

[8] Chebotarev A. M., Maslov V. P., “Processus de sauts et leurs applications dans la mécanique quantique”, Lecture Notes in Phys., 106, 1979, 58–72 | MR | Zbl

[9] Konstantinov A. A., Maslov V. P., Chebotarev A. M., “Veroyatnostnye predstavleriya resheniya zadachi Koshi dlya uravnenii kvantovoi mekhaniki”, UMN, 45:6 (1990), 3–24 | MR | Zbl

[10] Chebotarev A. M., Quezada-Batalla R., “Stochastic approach to time-dependent quantum tunneling”, Russian J. Math. Phys., 4:3 (1996), 275–286 | MR | Zbl

[11] Prokhorov Yu. V., Rozanov Yu. A., Teoriya veroyatnostei, Nauka, M., 1973

[12] Ito K., McKean H. P., Diffusion Processes and Their Sample Paths, Springer, Berlin, 1965