Comparison of Sums of Independent and Disjoint Functions in Symmetric Spaces
Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 483-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

The sums of independent functions (random variables) in a symmetric space $X$ on $[0,1]$ are studied. We use the operator approach closely connected with the methods developed, primarily, by Braverman. Our main results concern the Orlicz exponential spaces $\exp(L_p)$, $1\leqslant p\leqslant\infty$, and Lorentz spaces $\Lambda_\psi$. As a corollary, we obtain results that supplement the well-known Johnson–Schechtman theorem stating that the condition $L_p\subset X$, $p\infty$, implies the equivalence of the norms of sums of independent functions and their disjoint “copies”. In addition, a statement converse, in a certain sense, to this theorem is proved.
@article{MZM_2004_76_4_a0,
     author = {S. V. Astashkin and F. A. Sukochev},
     title = {Comparison of {Sums} of {Independent} and {Disjoint} {Functions} in {Symmetric} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--489},
     publisher = {mathdoc},
     volume = {76},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - F. A. Sukochev
TI  - Comparison of Sums of Independent and Disjoint Functions in Symmetric Spaces
JO  - Matematičeskie zametki
PY  - 2004
SP  - 483
EP  - 489
VL  - 76
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a0/
LA  - ru
ID  - MZM_2004_76_4_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A F. A. Sukochev
%T Comparison of Sums of Independent and Disjoint Functions in Symmetric Spaces
%J Matematičeskie zametki
%D 2004
%P 483-489
%V 76
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a0/
%G ru
%F MZM_2004_76_4_a0
S. V. Astashkin; F. A. Sukochev. Comparison of Sums of Independent and Disjoint Functions in Symmetric Spaces. Matematičeskie zametki, Tome 76 (2004) no. 4, pp. 483-489. http://geodesic.mathdoc.fr/item/MZM_2004_76_4_a0/

[1] Rosenthal H. P., “On the subspaces of $L_p$ ($p>2$) spanned by sequences of independent random variables”, Israel J. Math., 8 (1970), 273–303 | DOI | MR | Zbl

[2] Carothers N. L., Dilworth S. J., “Inequalities for sums of independent random variables”, Proc. Amer. Math. Soc., 194 (1988), 221–226 | DOI | MR

[3] Johnson W. B., Schechtman G., “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17 (1989), 789–808 | DOI | MR | Zbl

[4] Braverman M. Sh., Independent Random Variables and Rearrangement Invariant Spaces, Cambridge University Press, Cambridge, 1994

[5] Kruglov V. M., “Zamechanie k teorii bezgranichno delimykh znakov”, Teoriya veroyatnosti i ee primen., 15:2 (1970), 330–336 | MR | Zbl

[6] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978

[7] Lindenstrauss J., Tzafriri L., Classical Banach spaces. II. Function spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | Zbl

[8] Bennett C., Sharpley R., Interpolation of Operators, Academic Press, New York, 1988

[9] Kwapień S., Woyczyński W. A., Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, 1992 | Zbl

[10] Montgomery-Smith S., Semenov E. M., “Random rearrangements and operators”, Amer. Math. Soc. Trans. (2), 184 (1998), 157–183 | MR | Zbl