Analytic Classification of Fuchsian Singular Points
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 372-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the local analytic classification of Fuchsian singular points. The resonance formal normal form (FNF) of a system with a Fuchsian singular point, as well as the local analytic equivalence of a system to its resonance FNF, is well known. However, there are distinct resonance FNFs locally analytically equivalent to each other. The main theorem of the paper reduces the problem of local analytic equivalence of resonance FNFs to a problem about conjugacy of certain matrices associated to two FNFs (which are nil-triangular) by a block upper triangular matrix. As a consequence, the local analytic classification of Fuchsian singular points reduces to the study of the orbits of the group of block upper triangular matrices on nil-triangular matrices by conjugation.
@article{MZM_2004_76_3_a6,
     author = {V. A. Kleptsyn and B. A. Rabinovich},
     title = {Analytic {Classification} of {Fuchsian} {Singular} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {372--383},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a6/}
}
TY  - JOUR
AU  - V. A. Kleptsyn
AU  - B. A. Rabinovich
TI  - Analytic Classification of Fuchsian Singular Points
JO  - Matematičeskie zametki
PY  - 2004
SP  - 372
EP  - 383
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a6/
LA  - ru
ID  - MZM_2004_76_3_a6
ER  - 
%0 Journal Article
%A V. A. Kleptsyn
%A B. A. Rabinovich
%T Analytic Classification of Fuchsian Singular Points
%J Matematičeskie zametki
%D 2004
%P 372-383
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a6/
%G ru
%F MZM_2004_76_3_a6
V. A. Kleptsyn; B. A. Rabinovich. Analytic Classification of Fuchsian Singular Points. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 372-383. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a6/

[1] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya”, Dinamicheskie sistemy–1, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 1, VINITI, M., 1985, 7–150

[2] Levelt A. H. M., “Hypergeometric functions. I; II; III; IV”, Nederl. Acad. Wetensch. Proc. Ser. A, 64:4 (1961), 361–403 | MR | Zbl

[3] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | Zbl

[4] Ilyashenko Yu. S., “Nelineinaya problema Rimana–Gilberta”, Tr. MIAN, 213, Nauka, M., 1997, 10–34 | MR | Zbl

[5] Bolibrukh A. A., Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000

[6] Anosov D. V., Bolibrukh A. A., The Riemann–Hilbert Problem, Aspects of Math., Vieweg, Braunschweig, 1994 | Zbl

[7] Kashin V. V., “Orbity prisoedinennogo i koprisoedinennogo deistviya borelevskikh podgrupp poluprostoi algebraicheskoi gruppy”, Voprosy teorii grupp i gomologicheskoi algebry, Yaroslavl, 1990, 141–159 | MR

[8] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[9] Rabinovich B. A., Analiticheskaya klassifikatsiya fuksovykh osobykh tochek, Diplomnaya rabota, MGU, M., 1997

[10] Bolibrukh A. A., 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. MIAN, 206, Nauka, M., 1994 | MR | Zbl

[11] Brodskii I. B., “Ob invariantakh unipotentnykh grupp”, UMN, 31:1 (1976), 243–244 | MR | Zbl

[12] Brodskii I. B., “Ob orbitakh unipotentnykh grupp”, Funktsion. analiz i ego prilozh., 3:2 (1969), 19–23 | MR | Zbl

[13] Kirillov A. A., “Metod orbit i konechnye gruppy”, Studencheskie chteniya MK NMU, no. 1, MTsNMO, M., 2000, 37–73