Some Properties of a Class of Diagonalizable States of von~Neumann Algebras
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 350-361.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a class of representations of uniformly hyperfinite algebras is constructed and the corresponding von Neumann algebras are studied. It is proved that, under certain conditions, the Markov states generate factors of type $\operatorname{III}_\lambda$, where $\lambda\in(0,1)$, in the GNS representation; this gives a negative answer to the conjecture that the factors corresponding to Hamiltonians with nontrivial interactions have type $\operatorname{III}_1$. It is shown that, for a certain class of Hamiltonians, there exists a unique translation-invariant ground state.
@article{MZM_2004_76_3_a4,
     author = {N. N. Ganikhodzhaev and F. M. Mukhamedov},
     title = {Some {Properties} of a {Class} of {Diagonalizable} {States} of {von~Neumann} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {350--361},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a4/}
}
TY  - JOUR
AU  - N. N. Ganikhodzhaev
AU  - F. M. Mukhamedov
TI  - Some Properties of a Class of Diagonalizable States of von~Neumann Algebras
JO  - Matematičeskie zametki
PY  - 2004
SP  - 350
EP  - 361
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a4/
LA  - ru
ID  - MZM_2004_76_3_a4
ER  - 
%0 Journal Article
%A N. N. Ganikhodzhaev
%A F. M. Mukhamedov
%T Some Properties of a Class of Diagonalizable States of von~Neumann Algebras
%J Matematičeskie zametki
%D 2004
%P 350-361
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a4/
%G ru
%F MZM_2004_76_3_a4
N. N. Ganikhodzhaev; F. M. Mukhamedov. Some Properties of a Class of Diagonalizable States of von~Neumann Algebras. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 350-361. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a4/

[1] Powers R., “Representation of uniformly hyperfinite algebras and their assosiated von Neumann rings”, Ann. of Math., 81 (1967), 138–171 | DOI | MR

[2] Blekher P. M., “Nekotorye primeneniya faktorov”, Dzh. fon Neiman, Izbrannye trudy po funktsionalnomu analizu, T. II, Nauka, M., 1987, 353–359

[3] fon Neiman Dzh., Izbrannye trudy po funktsionalnomu analizu, T. II, Nauka, M., 1987 | Zbl

[4] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | Zbl

[5] Connes A., “Une classification des facteurs de type III”, Ann. Ecole Norm. Sup., 6 (1973), 133–252 | MR | Zbl

[6] Pillis J., “Non commutative Markov processes”, Trans. Amer. Math. Soc., 125:2 (1966), 264–279 | DOI | MR | Zbl

[7] Akkardi L., “O nekommutativnom markovskom svoistve”, Funktsion. analiz i ego prilozh., 8:1 (1975), 1–8 | MR

[8] Shukhov A. G., “Ob entropii diagonalizuemykh sostoyanii neimanovskikh algebr”, Funktsion. analiz i ego prilozh., 14:2 (1980), 95–96 | MR | Zbl

[9] Sinai Ya. G., Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980

[10] Bratteli O., Robinson D., Operator algebras and Quantum Statistical Mechanics, V. II, Springer-Verlag, Berlin, 1981 | Zbl

[11] Araki H., “On uniqueness of KMS states of one-dimensional quantum lattice systems”, Comm. Math. Phys., 44 (1975), 1–7 | DOI | MR | Zbl

[12] Kriger W., “On the finitary isomorphism of Markov shifts that have finite coding time”, Z. Wahr. verw. Geb., 65 (1983), 323–328 | DOI | MR

[13] Golodets V. Ya., Neshveyev S. V., “Non-Bernoullian $K$-systems”, Comm. Math. Phys., 195 (1998), 213–232 | DOI | MR | Zbl

[14] Stratila S., Modular Theory in Operator Algebras, Abacus Press, Bucuresti, 1981 | Zbl

[15] Glimm J., “Type I $C^*$-algebras”, Ann. of Math., 73 (1961), 572–612 | DOI | MR | Zbl

[16] Murakami T., Yamagami S., “On types of quasifree representations of Clifford algebras”, Publ. RIMS, 31 (1995), 33–44 | DOI | MR | Zbl