Description of Real $AW^*$-Factors of Type~I
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 344-349

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, real $AW^*$-algebras are considered, i.e., real $C^*$-algebras which are Baer *-rings. It is proved that every real $AW^*$-factor of type I (i.e., having a minimal projection) is isometrically *-isomorphic to the algebra $B(H)$ of all bounded linear operators on a real or quaternionic Hilbert space $H$ and, in particular, is a real $W^*$-factor. In the case of complex $AW^*$-algebras, a similar result was proved by Kaplansky.
@article{MZM_2004_76_3_a3,
     author = {Sh. A. Ayupov},
     title = {Description of {Real} $AW^*${-Factors} of {Type~I}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {344--349},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a3/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
TI  - Description of Real $AW^*$-Factors of Type~I
JO  - Matematičeskie zametki
PY  - 2004
SP  - 344
EP  - 349
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a3/
LA  - ru
ID  - MZM_2004_76_3_a3
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%T Description of Real $AW^*$-Factors of Type~I
%J Matematičeskie zametki
%D 2004
%P 344-349
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a3/
%G ru
%F MZM_2004_76_3_a3
Sh. A. Ayupov. Description of Real $AW^*$-Factors of Type~I. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 344-349. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a3/