Description of Real $AW^*$-Factors of Type~I
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 344-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, real $AW^*$-algebras are considered, i.e., real $C^*$-algebras which are Baer *-rings. It is proved that every real $AW^*$-factor of type I (i.e., having a minimal projection) is isometrically *-isomorphic to the algebra $B(H)$ of all bounded linear operators on a real or quaternionic Hilbert space $H$ and, in particular, is a real $W^*$-factor. In the case of complex $AW^*$-algebras, a similar result was proved by Kaplansky.
@article{MZM_2004_76_3_a3,
     author = {Sh. A. Ayupov},
     title = {Description of {Real} $AW^*${-Factors} of {Type~I}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {344--349},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a3/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
TI  - Description of Real $AW^*$-Factors of Type~I
JO  - Matematičeskie zametki
PY  - 2004
SP  - 344
EP  - 349
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a3/
LA  - ru
ID  - MZM_2004_76_3_a3
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%T Description of Real $AW^*$-Factors of Type~I
%J Matematičeskie zametki
%D 2004
%P 344-349
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a3/
%G ru
%F MZM_2004_76_3_a3
Sh. A. Ayupov. Description of Real $AW^*$-Factors of Type~I. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 344-349. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a3/

[1] Kaplansky I., “Projections on Banach algebras”, Ann. Math., 53 (1951), 235–249 | DOI | MR | Zbl

[2] Kaplansky I., “Algebras of type, I”, Ann. Math., 56 (1952), 460–472 | DOI | MR | Zbl

[3] Dixmier J., “Sur certains espaces considérés par M. H. Stone”, Summa Brasil. Math., 2 (1951), 151–182 | MR | Zbl

[4] Takenouchi O., “A non-$W^*$, $AW^*$-factor”, Lect. Notes Math., 650, 1978, 135–139 | MR | Zbl

[5] Dyer J., “Concerning $AW^*$-algebras”, Notices Amer. Math. Soc., 17 (1970), 788

[6] Albeverio S., Ayupov Sh. A., Abduvaitov A. H., On Real $AW^*$-algebras, Preprint No. 37, SFB 611, Bonn, 2002

[7] Li B. R., Real Operator Algebras, World Scientific, Singapore–New-Jersey–London–Hong-Kong, 2002

[8] Berberian S. K., Baer $*$-Rings, Springer-Verlag, Berlin–Heidelberg–New-York, 1972 | Zbl

[9] Putnam C. R., “On normal operators in Hilbert spaces”, Amer. J. Math., 73 (1950), 357–362 | DOI | MR

[10] Sakai S., Operator Algebras in Dynamical Systems, Encyclopedia of Mathematics and its Applications, 41, Cambridge University Press, Cambridge, 1991 | Zbl

[11] Kaplansky I., “Normed algebras”, Duke Math. J., 16 (1949), 399–418 | DOI | MR | Zbl

[12] Ayupov Sh. A., Azamov N. A., “Commutators and Lie isomorphisms of skew elements in prime operator algebras”, Comm. Algebra, 24:4 (1996), 1501–1520 | DOI | MR | Zbl