Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2004_76_3_a2, author = {G. G. Amosov and V. Zh. Sakbaev}, title = {On {Self-Adjoint} {Extensions} of {Schr\"odinger} {Operators} {Degenerating} on {a~Pair} of {Half-Lines} and the {Corresponding} {Markovian} {Cocycles}}, journal = {Matemati\v{c}eskie zametki}, pages = {335--343}, publisher = {mathdoc}, volume = {76}, number = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a2/} }
TY - JOUR AU - G. G. Amosov AU - V. Zh. Sakbaev TI - On Self-Adjoint Extensions of Schrödinger Operators Degenerating on a~Pair of Half-Lines and the Corresponding Markovian Cocycles JO - Matematičeskie zametki PY - 2004 SP - 335 EP - 343 VL - 76 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a2/ LA - ru ID - MZM_2004_76_3_a2 ER -
%0 Journal Article %A G. G. Amosov %A V. Zh. Sakbaev %T On Self-Adjoint Extensions of Schrödinger Operators Degenerating on a~Pair of Half-Lines and the Corresponding Markovian Cocycles %J Matematičeskie zametki %D 2004 %P 335-343 %V 76 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a2/ %G ru %F MZM_2004_76_3_a2
G. G. Amosov; V. Zh. Sakbaev. On Self-Adjoint Extensions of Schrödinger Operators Degenerating on a~Pair of Half-Lines and the Corresponding Markovian Cocycles. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 335-343. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a2/
[1] Uert Ch., Tomson R., Fizika tverdogo tela, Mir, M., 1966
[2] Gitman D. M., Tyutin I. D., Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986 | Zbl
[3] Amosov G. G., “On Markovian cocycle perturbations in classical and quantum probability”, Int. J. Math. Math. Sci., 54 (2003), 3443–3468 | DOI | MR
[4] Lindsay J. M., Wills S. J., “Fock space Markovian cocycles: their representation, generation and dilation”, Canad. Math. Soc. Conf. Proc., 29, 2000, 455–470 | MR | Zbl
[5] Liebscher V., “How to generate Markovian cocycles on boson Fock space”, Infin. Dimen. Anal. Quantum Probab. Rel. Top., 4 (2001), 215–219 | DOI | MR | Zbl
[6] Fikera G., “K edinoi teorii kraevykh zadach dlya elliptiko-parabolicheskikh uravnenii vtorogo poryadka”, Matematika, 164 (1963), 99–121
[7] Sakbaev V. Zh., “O postanovke zadachi Koshi dlya uravneniya Shrëdingera, vyrozhdayuschegosya na poluprostranstve”, ZhVMiMF, 42:11 (2002), 1700–1711 | MR
[8] Sakbaev V. Zh., “O svoistvakh reshenii zadachi Koshi dlya uravneniya Shrëdingera, vyrozhdayuschegosya na polupryamoi”, Sovremennaya matematika i ee prilozheniya, Trudy konferentsii “Suzdal–4”, no. 10, Suzdal, 2003, 176–192
[9] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983
[10] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | Zbl
[11] Rid M., Saimon B., Sovremennye metody matematicheskoi fiziki, T. 1, Mir, M., 1977
[12] Parthasarathy K. R., An Introduction to Quantum Stochastic Calculus, Birkhauser, Basel, 1992 | Zbl
[13] Chebotarev A. M., “Chto takoe kvantovoe stokhasticheskoe uravnenie s tochki zreniya funktsionalnogo analiza?”, Matem. zametki, 71:3 (2002), 448–469 | MR | Zbl
[14] Bhat B. V. R., “Cocycles of CCR flows”, Mem. Amer. Math. Soc., 709, 2001, 1–114 | MR
[15] Bhat B. V. R., “Minimal isometric dilations of operator cocycles”, Integr. Equat. Operat. Theory, 42 (2002), 125–141 | DOI | MR | Zbl
[16] Amosov G. G., “Cocycle perturbation of quasifree algebraic $K$-flow leads to required asymptotic dynamics of associated completely positive semigroup”, Infin. Dimen. Anal. Quant. Probab. Rel. Top., 3 (2000), 237–246 | MR
[17] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980
[18] Adamyan V. M., Arov D. Z., “Ob odnom klasse operatorov rasseyaniya i kharakteristicheskikh operator-funktsii szhatii”, Dokl. AN SSSR, 160:1 (1965), 9–12 | MR | Zbl
[19] Adamyan V. M., Arov D. Z., “Ob operatorakh rasseyaniya i polugruppakh szhatii v gilbertovom prostranstve”, Dokl. AN SSSR, 165:1 (1965), 9–12 | MR | Zbl