On Self-Adjoint Extensions of Schrödinger Operators Degenerating on a~Pair of Half-Lines and the Corresponding Markovian Cocycles
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 335-343

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Schrödinger equation for a quantum particle whose mass depends on the position of the particle on the real line. The well-posedness of the Cauchy problem is studied for the Schrödinger equation with characteristic form degenerating outside the finite segment $I=[-l,l]\subset\mathbb R$. We show that this problem generates a unitary Markovian cocycle.
@article{MZM_2004_76_3_a2,
     author = {G. G. Amosov and V. Zh. Sakbaev},
     title = {On {Self-Adjoint} {Extensions} of {Schr\"odinger} {Operators} {Degenerating} on {a~Pair} of {Half-Lines} and the {Corresponding} {Markovian} {Cocycles}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {335--343},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a2/}
}
TY  - JOUR
AU  - G. G. Amosov
AU  - V. Zh. Sakbaev
TI  - On Self-Adjoint Extensions of Schrödinger Operators Degenerating on a~Pair of Half-Lines and the Corresponding Markovian Cocycles
JO  - Matematičeskie zametki
PY  - 2004
SP  - 335
EP  - 343
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a2/
LA  - ru
ID  - MZM_2004_76_3_a2
ER  - 
%0 Journal Article
%A G. G. Amosov
%A V. Zh. Sakbaev
%T On Self-Adjoint Extensions of Schrödinger Operators Degenerating on a~Pair of Half-Lines and the Corresponding Markovian Cocycles
%J Matematičeskie zametki
%D 2004
%P 335-343
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a2/
%G ru
%F MZM_2004_76_3_a2
G. G. Amosov; V. Zh. Sakbaev. On Self-Adjoint Extensions of Schrödinger Operators Degenerating on a~Pair of Half-Lines and the Corresponding Markovian Cocycles. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 335-343. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a2/