Singular Strictly Monotone Functions
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 439-451
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe a universal approach to constructing continuous strictly monotone increasing singular functions on the closed interval $[-1,1]$. The “generator” of the method is the series $\sum_{k=1}^\infty\pm2^{-k}$ with random permutation of signs, and the corresponding functions are generated as distribution functions of such series. As examples, we consider two stochastic methods of arranging signs: independent and Markov.
@article{MZM_2004_76_3_a12,
author = {A. A. Ryabinin and V. D. Bystritskii and V. A. Il'ichev},
title = {Singular {Strictly} {Monotone} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {439--451},
publisher = {mathdoc},
volume = {76},
number = {3},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a12/}
}
A. A. Ryabinin; V. D. Bystritskii; V. A. Il'ichev. Singular Strictly Monotone Functions. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 439-451. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a12/