Singular Strictly Monotone Functions
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 439-451

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a universal approach to constructing continuous strictly monotone increasing singular functions on the closed interval $[-1,1]$. The “generator” of the method is the series $\sum_{k=1}^\infty\pm2^{-k}$ with random permutation of signs, and the corresponding functions are generated as distribution functions of such series. As examples, we consider two stochastic methods of arranging signs: independent and Markov.
@article{MZM_2004_76_3_a12,
     author = {A. A. Ryabinin and V. D. Bystritskii and V. A. Il'ichev},
     title = {Singular {Strictly} {Monotone} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {439--451},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a12/}
}
TY  - JOUR
AU  - A. A. Ryabinin
AU  - V. D. Bystritskii
AU  - V. A. Il'ichev
TI  - Singular Strictly Monotone Functions
JO  - Matematičeskie zametki
PY  - 2004
SP  - 439
EP  - 451
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a12/
LA  - ru
ID  - MZM_2004_76_3_a12
ER  - 
%0 Journal Article
%A A. A. Ryabinin
%A V. D. Bystritskii
%A V. A. Il'ichev
%T Singular Strictly Monotone Functions
%J Matematičeskie zametki
%D 2004
%P 439-451
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a12/
%G ru
%F MZM_2004_76_3_a12
A. A. Ryabinin; V. D. Bystritskii; V. A. Il'ichev. Singular Strictly Monotone Functions. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 439-451. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a12/