Small Systems of Generators of Groups
Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 420-426

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $S$ of a group $G$ is said to be large (left large) if there is a finite subset $K$ such that $G=KS=SK$ $(G=KS)$. A subset $S$ of a group $G$ is said to be small (left small) if the subset $G\setminus KSK$ $(G\setminus KS)$ is large (left large). The following assertions are proved: (1) every infinite group is generated by some small subset; (2) in any infinite group $G$ there is a left small subset $S$ such that $G=SS^{-1}$; (3) any infinite group can be decomposed into countably many left small subsets each generating the group.
@article{MZM_2004_76_3_a10,
     author = {I. V. Protasov},
     title = {Small {Systems} of {Generators} of {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {420--426},
     publisher = {mathdoc},
     volume = {76},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a10/}
}
TY  - JOUR
AU  - I. V. Protasov
TI  - Small Systems of Generators of Groups
JO  - Matematičeskie zametki
PY  - 2004
SP  - 420
EP  - 426
VL  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a10/
LA  - ru
ID  - MZM_2004_76_3_a10
ER  - 
%0 Journal Article
%A I. V. Protasov
%T Small Systems of Generators of Groups
%J Matematičeskie zametki
%D 2004
%P 420-426
%V 76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a10/
%G ru
%F MZM_2004_76_3_a10
I. V. Protasov. Small Systems of Generators of Groups. Matematičeskie zametki, Tome 76 (2004) no. 3, pp. 420-426. http://geodesic.mathdoc.fr/item/MZM_2004_76_3_a10/