The Concentration Function of Additive Functions with Special Weight
Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 265-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $g(n)$ is an additive real-valued function, $$ W(N)=4+\min_\lambda\lambda^2+\sum_{p}\frac1p\min(1,(g(p)-\lambda\log p)^2), \quad E(N)=4+\sum_{p,\ g(p)\ne0}\frac1p. $$ In this paper, we prove the existence of constants $C_1$$C_2$ such that the following inequalities hold: $$ \begin{aligned} \sup_a|\{n,m,k:m,k\in\mathbb Z,\ n\in\mathbb N,\ n+m^2+k^2=N,\ g(n)\in[a,a+1)\}| \le\frac{C_1N}{\sqrt{W(N)}}, \\ \sup_a|\{n,m,k:m,k\in\mathbb Z,\ n\in\mathbb N,\ n+m^2+k^2=N,\ g(n)=a\}| \le\frac{C_2N}{\sqrt{E(N)}}. \end{aligned} $$ The obtained estimates are order-sharp.
@article{MZM_2004_76_2_a9,
     author = {N. M. Timofeev and M. B. Khripunova},
     title = {The {Concentration} {Function} of {Additive} {Functions} with {Special} {Weight}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {265--285},
     publisher = {mathdoc},
     volume = {76},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a9/}
}
TY  - JOUR
AU  - N. M. Timofeev
AU  - M. B. Khripunova
TI  - The Concentration Function of Additive Functions with Special Weight
JO  - Matematičeskie zametki
PY  - 2004
SP  - 265
EP  - 285
VL  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a9/
LA  - ru
ID  - MZM_2004_76_2_a9
ER  - 
%0 Journal Article
%A N. M. Timofeev
%A M. B. Khripunova
%T The Concentration Function of Additive Functions with Special Weight
%J Matematičeskie zametki
%D 2004
%P 265-285
%V 76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a9/
%G ru
%F MZM_2004_76_2_a9
N. M. Timofeev; M. B. Khripunova. The Concentration Function of Additive Functions with Special Weight. Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 265-285. http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a9/

[1] Ruzsa I., “On the concentration of additive functions”, Acta Math. Aca. Sci. Hungar., 36 (1980), 215–232 | DOI | MR | Zbl

[2] Elliott P. D. T. A., “The concentration function of additive functions on shifted primes”, Acta Math., 173 (1994), 1–35 | DOI | MR | Zbl

[3] Timofeev N. M., “Gipoteza Erdesha–Kubilyusa o raspredelenii znachenii additivnykh funktsii na posledovatelnosti sdvinutykh prostykh chisel”, Acta Arithmetica, 58:2 (1991), 113–131 | MR | Zbl

[4] Timofeev N. M., Khripunova M. B., “O funktsii kontsentratsii additivnoi funktsii s nemultiplikativnym vesom”, Matem. zametki, 75:6 (2004), 877–894 | MR | Zbl

[5] Timofeev N. M., “Problema Khardi i Littlvuda dlya chisel, imeyuschikh zadannoe chislo prostykh delitelei”, Izv. RAN. Ser. matem., 59:6 (1995), 181–206 | MR | Zbl

[6] Tenenbaum G., Introduction à la théorie analytique et probabiliste des nombres, Institut Elie Cartan, 13. Université de Nancy I, 1990

[7] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka, M., 1983

[8] Halberstam H., Richert H. E., Sieve Methods, Academic Press, London–New York, 1974 | Zbl

[9] Hall R., Tenenbaum G., 90 Divisors, Cambridge University Press, Cambridge, 1988

[10] Khooli K., Primenenie metodov resheta v teorii chisel, Nauka, M., 1987