The Concentration Function of Additive Functions with Special Weight
Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 265-285
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose that $g(n)$ is an additive real-valued function,
$$
W(N)=4+\min_\lambda\lambda^2+\sum_{p}\frac1p\min(1,(g(p)-\lambda\log p)^2), \quad
E(N)=4+\sum_{p,\ g(p)\ne0}\frac1p.
$$
In this paper, we prove the existence of constants $C_1$, $C_2$ such that the following inequalities hold:
$$
\begin{aligned}
\sup_a|\{n,m,k:m,k\in\mathbb Z,\ n\in\mathbb N,\ n+m^2+k^2=N,\ g(n)\in[a,a+1)\}| \le\frac{C_1N}{\sqrt{W(N)}},
\\
\sup_a|\{n,m,k:m,k\in\mathbb Z,\ n\in\mathbb N,\ n+m^2+k^2=N,\ g(n)=a\}|
\le\frac{C_2N}{\sqrt{E(N)}}.
\end{aligned}
$$
The obtained estimates are order-sharp.
@article{MZM_2004_76_2_a9,
author = {N. M. Timofeev and M. B. Khripunova},
title = {The {Concentration} {Function} of {Additive} {Functions} with {Special} {Weight}},
journal = {Matemati\v{c}eskie zametki},
pages = {265--285},
publisher = {mathdoc},
volume = {76},
number = {2},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a9/}
}
N. M. Timofeev; M. B. Khripunova. The Concentration Function of Additive Functions with Special Weight. Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 265-285. http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a9/