Smoothly Varying Functions and Perfect Proximate Orders
Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 258-264
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown in this paper that $h(r)$ is a smoothly varying function of order $\rho$ if and only if the function $\rho(r)=(\ln h(r))/\ln r$ is a perfect proximate order, i.e., an infinitely differentiable (in a neighborhood of $+\infty$) function for which the conditions $\lim_{r\to+\infty}\rho(r)=\rho$, $\rho\in\mathbb R$, and $\lim_{r\to+\infty}r^n\ln r\rho^{(n)}(r)=0$ for all $n\in\mathbb N$ are satisfied. Consequences of the result indicated above are also obtained in this paper.
@article{MZM_2004_76_2_a8,
author = {V. A. Tarov},
title = {Smoothly {Varying} {Functions} and {Perfect} {Proximate} {Orders}},
journal = {Matemati\v{c}eskie zametki},
pages = {258--264},
year = {2004},
volume = {76},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a8/}
}
V. A. Tarov. Smoothly Varying Functions and Perfect Proximate Orders. Matematičeskie zametki, Tome 76 (2004) no. 2, pp. 258-264. http://geodesic.mathdoc.fr/item/MZM_2004_76_2_a8/
[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956
[2] Bingham N. H., Goldie C. M., Teugels J. L., Regular Variation, Encyclopedia of Mathematics and its Applications, 27, Cambridge University Press, Cambridge, 1987 | MR | Zbl
[3] Balkema A. A., Geluk J. L., De Haan L., “An extension of Karamata's Tauberian theorem and its connection with complementary convex functions”, Quart. J. Math. Oxford (2), 30:120 (1979), 385–416 | DOI | MR | Zbl
[4] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | Zbl